GeoEnvironmental Consultants

ACN 079 083 640

Specialising in the Earth and what's built on it

Pty Ltd

129 Outlook Crescent Bardon Qld. 4065

E-mail: mtisdall@bigpond.com

Phone: (07) 3367 2266 Fax: (07) 3367 2377 Mobile: 0407 178 802

REPORT

GROUNDWATER MONITORING – JULY 2015 BINARY INDUSTRIES SITE MAGNESIUM COURT, NARANGBA, QLD

Prepared for:

DEPARTMENT OF ENVIRONMENT AND HERITAGE PROTECTION (EHP)

August 2015 Ref N°: 5010/7GW

RECORD OF DISTRIBUTION

Report	Report Format	Distributed To:	Date	No. of
Status				Copies
Final	Electronic Copy	Nadine Cooper, EHP	13/8/2015	1
		GeoEnvironmental Consultants		1
	Hard Copy	Nadine Cooper, EHP	13/8/2015	1
		GeoEnvironmental Consultants		1

GeoEnvironmental Consultants

ACN 079 083 640

Specialising in the Earth and what's built on it

Pty Ltd

129 Outlook Crescent Bardon Qld. 4065

E-mail: mtisdall@bigpond.com

Phone: (07) 3367 2266 Fax: (07) 3367 2377 Mobile: 0407 178 802

13th August 2015

Our Ref: 5010/7GW Your Ref: LQ5010/7

Ms. Nadine Cooper, Principle Environmental Officer **Department of Environment and Heritage Protection**, Brisbane Moreton Bay

Environmental Services and Regulation

33 King Street

CABOOLTURE, QLD 4510

RE: REPORT
GROUNDWATER MONITORING – JULY 2015
BINARY INDUSTRIES SITE
MAGNESIUM COURT, NARANGBA, QLD

Dear Nadine,

We have pleasure in submitting one hard copy and one e-copy of our Final Report entitled "*Groundwater Monitoring, July 2015, Binary Industries Site, Magnesium Court, Narangba, QLD*" as requested by **EHP** on 17th June 2015 (PO No. 4500050258).

GeoEnvironmental Consultants conclude, on the basis of this monitoring event that groundwater conditions at the site have stabilized and are sufficient to support a qualitative and quantitative risk assessment of the site. Elevated concentrations of the heavy metals Cr, Cu, Pb and/or Zn (in up to 16 monitoring wells), pesticides, herbicides and phenolic compounds were detected in monitoring wells surrounding the Binary Industries facility and the un-named creek.

The concentration of herbicides and phenolic compounds has been generally decreasing in all wells from concentrations measured in June 2007. Measured concentrations increased significantly during the May 2014 monitoring event but have generally returned to levels consistent with levels measured prior to 2014. The results of this and prior monitoring events continue to indicate evidence of downgradient migration of herbicide and phenolic compound impact away from well MW4 in a north westerly direction toward wells MW23 and MW24. Further contaminant migration in this direction may require future installation of additional monitoring wells.

Three monitoring wells (wells MW1, MW2 and MW19) were damaged and/or destroyed by earthmoving equipment since completion of the May 2014 monitoring event when damage to well MW4 was noted. Both wells MW4 and MW19 were able to be repaired and resurveyed so that accurate static water level elevations could be determined and groundwater samples were obtained. However, wells MW1 and MW2 were destroyed. It is our opinion that the data obtained from wells MW4 and MW19 appears consistent with historical results and results obtained from similar wells on this site. Further sampling of wells MW4 and MW19 is recommended with results closely scrutinized to evaluate the integrity of data from the wells.

GeoEnvironmental Consultants recommend that **EHP** conduct further monitoring of groundwater conditions at the site on a yearly basis until a qualitative and quantitative risk assessment of the remaining contamination is conducted. The results of this risk assessment can be used to evaluate future site risks, management and monitoring options.

It has been a pleasure performing these environmental services on your behalf. Should you have any queries regarding the contents of this report, please contact either Steve Termont-Schenk (0418-883-152) or myself (07-3367-2266).

Yours faithfully,

Michael Tisdall BSc. PGDipSc.

for GeoEnvironmental Consultants Pty Ltd

Encl: Final Report (1 copy, one electronic copy via e-mail)

Page 1 of 1

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
	1.1 Objectives	1
	1.2 Scope of Work	1
	1.3 Previous Groundwater Monitoring	2
2.0	SAMPLING AND ANALYSIS PROGRAM	2
	2.1 Monitoring Well Inspection, Gauging and Purging	2
	2.2 Water Sampling	2 3
	2.3 Analytical Program	4
3.0	ASSESSMENT CRITERIA	5
4.0	GROUNDWATER MONITORING RESULTS	5
	4.1 Field Measurements	5
	4.1.1 Static Water Levels	5
	4.1.2 Electrical Conductivity	6
	4.1.3 pH measurement	6
	4.2 Analytical Results	6
	4.2.1 Heavy Metal Results	6
	4.2.2 Pesticide Results	9
	4.2.3 Herbicide Results	10
	4.2.4 Phenolic Compound Results	11
5.0	QUALITY ASSURANCE	11
6.0	CONCLUSIONS AND RECOMMENDATIONS	12
7.0	LIMITATIONS OF REPORT	14

DRAWINGS

Drawing No. 1 – Monitoring Well Locations and Groundwater Contours

TABLES

- Table 1 Well Condition, Groundwater Gauging Results and Field Water Quality Parameters
- Table 2 Groundwater Analytical Results, Metals, Pesticides and Herbicides
- Table 3 Groundwater Analytical Results, Phenolic Compounds

APPENDICES

- Appendix A Laboratory Reports and Chain of Custody Documentation
- Appendix B Quality Assurance and Quality Control Procedures

Page 1 of 1

GLOSSARY OF ABBREVIATIONS

The following abbreviations used in this report are defined here as a reference to assist review and understanding of the report:

AHD Australian Height Datum

ALS Australian Laboratory Services Pty Ltd

ANZECC Australian and New Zealand Environment and

Conservation Council

As Arsenic

BTOC Below Top of Casing

Cd Cadmium

Cr Chromium

Cu Copper

EHP Department of Environment & Heritage

Protection, Queensland

EC Electrical Conductivity

FMAE Fresh and Marine Water Aquatic Ecosystem trigger

levels as presented in the publication "Australian and New Zealand Guidelines for Fresh and Marine Water

Quality", (ANZECC, 2000)

Hg Mercury

LOR Level of Reporting

NATA National Association of Testing Authorities Australia

NEPM National Environment Protection (Assessment of Site

Contamination) Amendment Measure 2013

Ni Nickel

OC/OP pesticides Organochlorine and Organophosphorus pesticides

PA Herbicides Phenoxyacetic Acid Herbicides

Pb Lead

QC Quality Control

SPH Separate phase hydrocarbon

TOC Top of Casing

Zn Zinc

GeoEnvironmental Consultants

ACN 079 083 640

Specialising in the Earth and what's built on it

Pty Ltd

129 Outlook Crescent Bardon Qld. 4065

E-mail: mtisdall@bigpond.com

Phone: (07) 3367 2266 Fax: (07) 3367 2377 Mobile: 0407 178 802

1.0 INTRODUCTION

Department of Environment and Heritage Protection (EHP) engaged **GeoEnvironmental Consultants Pty Ltd** (EHP Purchase Order No. 4500050258 dated 17th June 2015) to undertake environmental groundwater monitoring services at the Binary Industries site at Magnesium Court, Narangba, Queensland. The commission was for provision of groundwater monitoring and reporting services at the subject site in July 2015. The results of this monitoring round are presented in this report. All monitoring locations are shown on Drawing No. 1, *Monitoring Well Locations*.

1.1 Objective

The objective of this groundwater monitoring program is to monitor groundwater quality at the site as part of an on-going environmental monitoring and remediation program being undertaken by **EHP**. **EHP** conducts the groundwater monitoring to ascertain if there are any threats to groundwater as a result of the chemical fire that occurred at the site in August 2005.

We were advised by **EHP** that the primary contaminants of concern at the site are Phenols, herbicides (including Phenoxyacetic Acid Herbicides (PA herbicides) and Metolachlor) and Organochlorine and Organophosphorus pesticides (OC/OP pesticides) associated with the pesticide manufacturing, storage and distribution center that formerly operated at the Binary Industries site.

1.2 Scope of Work

The scope of work for this monitoring event to meet the stated project objectives consists of the following tasks:

- Gauge depth to water, purge four casing volumes of groundwater using dedicated disposable bailers supplied by EHP (or wells which purge dry in accordance with AS5667.11 1998: Water Quality Sampling or more recent additions) and allow groundwater to recover in the existing monitoring wells installed at the site and the EHP Background well (designated Backg'nd in this report);
- Sample each of the 20 operational groundwater monitoring wells located around the Binary Industries site and the EHP Background well using the dedicated disposable bailers;
- Collect two (2) duplicate samples, one (1) triplicate sample and one (1) rinsate sample for quality control purposes;
- Field measurement of groundwater samples for pH, temperature and electrical conductivity;
- Request analysis of 21 groundwater samples, two duplicate samples, one triplicate sample and one rinsate sample to detect the presence of site specific target analytes (per the list requested by **EHP** 8 heavy metals including arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg), OC/OP pesticides, herbicides including Metolachlor and PA

herbicides) and 8 groundwater samples (Well Nos. MW4, 5, 6, 19, 22, 23, 24 and the **EHP** Background well) one duplicate sample and one triplicate sample for phenols in the NATA-registered laboratory of either ALS (primary laboratory) or SGS Australia (secondary laboratory for quality assurance) which are accredited for the methods performed as requested by **EHP**;

- On completion of sampling the monitoring wells were left in a secure condition with the caps locked, if requested. A condition report for each well is provided in Table 1 of this report; and
- Preparation of tabulated results of the groundwater sampling and analysis and a report including observations and well conditions, field monitoring results, a plan showing groundwater contours based on the gauging results and a summarised assessment of the results compared to the results of the November/December 2006, June and December 2007, August 2008, July 2011, May and November 2012, May 2013 and the May 2014 monitoring rounds and the potential impact of groundwater discharge to the receiving environment based on the assessment criteria provided by EHP.

1.3 Previous Groundwater Monitoring

Previous rounds of groundwater monitoring at this site have been conducted by GHD and EHP intermittently since August 2005. Results of prior monitoring events were not made available to GeoEnvironmental Consultants. GeoEnvironmental Consultants conducted rounds of monitoring on all known groundwater monitoring wells in November/December 2006, June 2007, December 2007, August 2008, July 2011, May 2012, November 2012, May 2013 and again in May 2014 with the results presented to EHP in January and July 2007, December 2007, September 2008, August 2011, June and November 2012, June 2013 and June 2014, respectively. In addition, GeoEnvironmental Consultants installed and conducted monitoring on four new groundwater monitoring wells (MW21 through 24, inclusive) in May 2008. All known current monitoring locations at the site with the exception of the EHP Background well are shown on Drawing No. 1, Monitoring Well Locations and Groundwater Contours. The EHP Background well is located along the west side of Potassium Street north of the intersection of Boundary Road (UBD Ref: Map 79, F12).

2.0 SAMPLING AND ANALYSIS PROGRAM

2.1 Monitoring Well Inspection, Gauging and Purging

GeoEnvironmental Consultants visited the site on 30th June and 1st, 4th and 5th July to carry out fieldwork associated with the July 2015 monitoring event. The condition of each monitoring well on arrival is noted on Table 1, *Well Condition, Groundwater Gauging Results and Field Water Quality Parameters*.

Most wells appeared to be in good condition except for:

 MW1 has had significant washout impact since the May 2014 monitoring event. The steel roadbox cover and surrounding concrete are off the bore and broken up, the PVC cap had been removed and the well was full of soil/silt;

- MW2 was not able to be located. Significant earthworks/regrading has occurred
 where it was located since the May 2014 monitoring event and it assumed that the well
 was damaged or removed;
- Monitoring Well No. MW19 appeared to have been hit by a vehicle or machine while earthworks were conducted in the area since the May 2014 monitoring event. The protective well standpipe was bent over and the PVC well casing was bent below ground level but the base of the bore and the internal casing appeared to be intact. Following rectification work consisting of removal of the steel protective casing and cutting off the aboveground portion of the PVC well casing the well was able to be gauged and a groundwater sample was obtained from the well. On 30th July 2015 a new flush-mounted steel surface cover was installed and the well was resurveyed by Schlencker Mapping;
- Monitoring Well No. MW9 which has been hit and has been bent over for some time but is still operable;
- It is our assumption that Monitoring Well Nos MW8 and MW18 were never installed;
- Monitoring Well No. MW12 which was destroyed by construction of the fire access road prior to July 2011; and
- MW14 has been filled with silt since early-2007 and is now dry.

Four of the wells (MW7, MW10, MW13 and MW15) located off-site along the un-named creek were not locked at the time of this monitoring event. In addition, all wells which are located within flush-mounted steel roadbox covers (MW6, MW17 and the **EHP** Background well) were not locked.

Water levels were gauged in all monitoring wells on 1st, 4th or 5th July 2015 using an electronic interface probe equipped to measure the thickness of separate phase hydrocarbon (SPH), if present, and the depth to the static water level below the top of the well casing reference point. All wells were gauged prior to purging and again prior to gathering groundwater samples.

Field sampling was conducted in accordance with the EPA's "Water Quality Sampling Manual" (3rd Edition, December 1999) and with reference to AS/NZS 5667.11:1998, "Water Quality – Sampling" and the "Guideline, Contaminated Land Professionals, Queensland EHP (August 2014)". Monitoring wells were purged of at least three casing volumes, or until dry, using a disposable acrylic bailer or a submersible electronic pump. The volume of water purged from each monitoring well was measured and recorded on Table 1.

2.2 Water Sampling

Samples were gathered using a disposable acrylic bailer for each well. Field parameters were monitored during purging and sampling operations and recorded. Water quality parameters measured in the field are presented on Table No. 1, *Well Condition, Groundwater Gauging Results and Field Water Quality Parameters*.

Samples were collected in laboratory supplied and prepared bottles provided by the NATA-certified laboratory of the primary laboratory, Australian Laboratory Services (ALS) of Stafford, Queensland. To evaluate the accuracy of the primary laboratory one duplicate sample and one triplicate sample were collected in laboratory supplied and prepared bottles provided by the NATA-certified laboratory of SGS Environmental Services (SGS) of Pinkenba, Queensland.

Samples intended for metals analysis were field-filtered through a field-filtering unit and pump equipped with disposable $0.45\mu m$ filter papers. All sampling equipment was decontaminated with phosphate free detergent and double rinsed in fresh water before gathering successive samples.

Samples were designated by a number that corresponded to the sample location (e.g. Sample No. MW3 relates to the groundwater sample collected from monitoring well MW3, Sample No. Backg'nd relates to the groundwater sample collected from the **EHP** Background well). Two field duplicate samples designated Sample Nos. DUP1 and DUP2 were gathered for quality control purposes during this sampling event from Monitoring Well No. MW19 and MW23, respectively. One field triplicate sample designated Sample No. TRIP1 was gathered for quality control purposes during this sampling event from Monitoring Well No. MW19. One rinsate sample designated Sample No. RIN1 was gathered for quality control purposes after gathering a sample from Monitoring Well No. Backg'nd during this monitoring event.

A water sample was obtained from damaged Monitoring Well No. MW19 by removing the steel protective standpipe and cutting off the PVC well casing which was kinked just below ground surface. A new flush-mounted steel roadbox cover was subsequently installed at the ground surface, the well was resurveyed and a well plug was inserted into the standpipe of well MW19 following sampling.

A water sample could not be obtained from Monitoring Well Nos. MW2 and MW12 as the wells are assumed to have been destroyed and could not be located. No water was obtained from Monitoring Well Nos. MW1 and MW14 as the wells were full of soil and were dry. All groundwater samples were placed immediately into a chilled esky and transported on 7th July 2015 to ALS and SGS for analysis under strict chain-or-custody documentation.

2.3 Analytical Program

Nineteen water samples, one duplicate sample and one rinsate sample collected during this monitoring event were analysed by the primary laboratory, ALS. Analyses included a suite of eight heavy metals including arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg); OC/OP pesticides; herbicides (including Metolachlor and PA herbicides) and phenols (wells MW4, 5, 6, 19, 22, 23, 24 and Backg'nd and quality control Sample No. DUP1). ALS is NATA-certified for each of these analyses.

One duplicate sample (Sample No. DUP2) and one triplicate water sample (Sample No. TRIP1) collected during this monitoring event were analysed by the secondary laboratory, SGS. Analyses included a suite of eight heavy metals including As, Cd, Cr, Cu, Pb, Ni, Zn and Hg; OC/OP pesticides; herbicides (including Metolachlor and PA herbicides) and phenols. SGS is NATA-certified for each of these analyses.

Details of laboratory methods and method detection limits (or LOR, level of reporting) utilised by ALS (the primary laboratory) for the various analyses are as follows:

ANALYTES	GROUNDWAT	ER WATER
	Laboratory Method	Level Of Reporting
Trace Elements		
Arsenic	ICPMS (USEPA 6020)	0.001 mg/L
Cadmium	ICPMS (USEPA 6020)	0.0001 mg/L
Chromium	ICPMS (USEPA 6020)	0.001 mg/L
Copper	ICPMS (USEPA 6020)	0.001 mg/L
Lead	ICPMS (USEPA 6020)	0.001 mg/L
Nickel	ICPMS (USEPA 6020)	0.001 mg/L
Zinc	ICPMS (USEPA 6020)	0.005 mg/L
Mercury	CV-FIMS	0.0001 mg/L
OC/OP Pesticides	ALS EP068A/B	$0.5 - 2 \mu g/L$
PA Herbicides: 2,4-D & MCPA	LCMS (ALS EP202SL)	10 μg/L
Multiresidue Pesticide Screen:	LCMS (ALS EP215LL)	0.005 μg/L
(Incl. Metolachlor &Chlorpyrifos)		
Phenols	SIM (ALS EP075)	$1 - 96.2 \mu g/L$

Table No. 2, *Groundwater Analytical Results, Metals, Pesticides and Herbicides*, present the analytical results for all water samples collected for analysis during this and prior monitoring events. Table No. 3, *Groundwater Analytical Results, Phenolic Compounds*, presents the phenolic compounds analytical results for wells MW2, 3, 4, 5, 6, 11, 19, 21, 22, 23, 24 and Backg'nd from all monitoring events as well as the results for samples DUP1, DUP2 and TRIP1 from this monitoring event. Full NATA-certified laboratory reports from both ALS and SGS, Sample Receipt Notification and Chain of Custody documentation for samples collected during this monitoring event are included in Appendix A of this report. Laboratory quality control (QC) reports from ALS and SGS are also included in Appendix A.

3.0 ASSESSMENT CRITERIA

There are currently no established guidelines available for the assessment of groundwater in Queensland. However, for the purpose of evaluating the groundwater quality the Australian National Environment Protection Council publication, *National Environment Protection* (Assessment of Site Contamination) Amendment Measure 2013 (NEPM, 2013), groundwater investigation levels (GILs) for protection of fresh, marine and drinking water quality are provided.

GeoEnvironmental Consultants have compared the results of this monitoring event with:

1. NEPM 2013 GILs for the protection of freshwater aquatic ecosystems based on ANZECC 2000 guidance levels for slightly to moderately disturbed ecosystems (95% level of protection) have been used, allowing for possible chronic effects and bioaccumulation with the exception of Metolachlor. EHP recommended a site-specific water quality criteria of 1 μg/L applicable to stormwater discharges from the Binary Industries site be used as a trigger value for Metolachlor in groundwater. The ANZECC 2000 freshwater guidance levels were used to assess monitoring results prior to 2013.

4.0 GROUNDWATER MONITORING RESULTS

Results of field and laboratory testing conducted during this monitoring event compared with the results obtained during previous monitoring events are discussed in the following sections. Refer to Table No. 1 for the results of field results from this monitoring event and Table Nos. 2 and 3 for analytical results for all water samples collected for analysis during this and prior monitoring events.

4.1 Field Measurements

4.1.1 Static Water Levels

Static water levels measured in monitoring wells during this monitoring event ranged between 0.015m (Monitoring Well Nos. MW10) to 12.245m (Monitoring Well No. MW22) below top of casing (BTOC). Groundwater elevations vary between a low of 10.722m Australian Height Datum (AHD) in Monitoring Well No. MW16 to a high of 22.271m AHD in Monitoring Well No. MW17.

Groundwater elevations in the vicinity of the Binary site were an average of approximately 0.19m higher than measured during the previous monitoring event (May 2014). Elevations ranged between 1.265m lower (MW22) to 2.635m higher (MW17). These wells are located immediately adjacent to the west and east sides, respectively, of the Binary site and the Binary Dam. The groundwater elevation in the **EHP** Background well was 1.535m higher than measured in May 2014.

Schlencker Mapping surveyed all existing monitoring wells in either November 2006 or April 2008 to provide accurate top of casing elevations for all wells. However, due to damage to well MW4 (noted in May 2014) and MW19 (noted in July 2015) the elevation of these wells was resurveyed by Schlencker Mapping on 1st August 2015. Refer to Table No. 1 for the results of gauging conducted on the 19 existing monitoring wells included in this monitoring event.

Separate phase hydrocarbon (SPH) was not measured in any of the monitoring wells at this site during this monitoring event. Groundwater elevation contours inferred from gauging results for this monitoring event are presented on Drawing No. 1. Review of Drawing No. 1 indicates that the groundwater hydraulic gradient is approximately 0.0243 to the east/northeast and 0.0106 to the west/northwest from a groundwater high mound located east of the Binary Industries Dam (wells MW5 and MW17). Historically the groundwater high mound was located below the Binary Industries site (well MW4 near the Binary Dam) but appears to be moving east/northeast in the last 2 years.

The amount of this gradient, calculated as the difference in static water level across a given horizontal distance measured along the direction of travel, has been increasing over the past 2 years. The gradient in May 2014 compared to gradient to the east/northeast measured in May 2013 was 0.0195 and in November 2012 it was 0.0196. The flow direction is consistent with prior monitoring events although the location of the groundwater mound has moved east/northeast over the past 2 years.

4.1.2 Electrical Conductivity (EC)

Electrical conductivity measured in the field varied between a low of 178μ S/cm in Monitoring Well No. MW13 to a high of 741μ S/cm in Monitoring Well No. MW4 during this monitoring event. The **EHP** Background well had a field EC value of $1,048\mu$ S/cm. EC values measured in all monitoring wells surrounding the Binary Industries site were generally consistent with the EC value measured in May 2014 indicative of generally consistent to slightly higher groundwater levels.

EC values in excess of $1,500\mu\text{S/cm}$ are indicative of either brackish groundwater conditions or organic chemical impact. No EC value in excess of $1,500\,\mu\text{S/cm}$ was measured during this monitoring event. Previously, only EC values in the **EHP** Background well have exceeded this level.

4.1.3 pH Measurement

Water pH measured in the field indicates that the groundwater is generally moderately to slightly acidic with a pH of between 3.99 (MW23) to 6.31 (MW20) in the eighteen monitoring wells while the pH measured in the **EHP** Background well was pH 3.94). The lowest pH levels (levels less than 5.0) were all measured in wells located in close proximity to the perimeter of the Binary Industries site with the exception of the **EHP** Background well.

4.2 Analytical Results

4.2.1 Heavy Metals Results

The July 2015 monitoring event results indicate the heavy metals Cr, Cu, Pb, and Zn are present at concentrations above the adopted environmental criteria in four or more wells of the nineteen (19) site wells and the **EHP** Background well. The metalloid As as well as the heavy metals Cd, Ni and Hg were detected at concentrations below adopted environmental criteria and/or below laboratory levels of reporting in all monitoring wells in this monitoring event. These results are consistent with the May 2014 results.

Review of all individual metalloid/metal concentrations and distributions for the July 2015 and preceding monitoring rounds has been undertaken to assess any distribution patterns and trends that may be emerging. The review indicates the following:

Arsenic (As)

In July 2015 As concentrations were below adopted criteria in all wells and were only detected in 5 wells. This is a slight reduction from the 7 wells with detectable levels in May 2014 and the 14 wells in which As has previously been detected. In previous rounds As has been detected at concentrations above environmental criteria in wells MW7, MW11, MW14 and MW20 located along the creek to the south east of the Binary site. Detectable As in July 2015 was present in one area centered on MW7/MW19/MW20 and two non-contiguous wells, MW16 and MW21 all located along the creek.

Cadmium (Cd)

In July 2015 Cd concentrations were below adopted criteria in all wells and below the laboratory level of detection in all wells. This is similar to May 2014 and a reduction from the 21 wells in which Cd has previously been detected. In previous rounds Cd has been detected

at concentrations above environmental criteria in most monitoring wells at the site, but consistently in none of the wells. No pattern or trends are apparent from this data.

Chromium (Cr)

In July 2015 Cr concentrations were above adopted environmental criteria in 4 wells and were below levels of reporting in all other wells. This is similar to the 5 wells above criteria in May 2013 but a reduction from the 8 wells in May 2014 and the 13 wells in which Cr has previously been detected. In previous rounds Cr has been detected at concentrations above environmental criteria in 11 wells distributed widely over the monitored area. Cr concentrations above adopted criteria in July 2015 were present in three non-contiguous areas, the southern portion of the site (well MW7), an area in the eastern portion (wells MW11 and MW21) and in the western portion (well MW4), representing a mostly similar area of detectable Cr occurrence as observed previously. Cr was detected at concentration of 0.002mg/L in all 4 wells which is slightly above the laboratory level of reporting and the environmental criteria level of 0.001mg/L.

Copper (Cu)

In July 2015 Cu concentrations were above adopted environmental criteria in 7 wells and were detected below criteria or levels of reporting in all other wells including the **EHP** Background well. This is a reduction from the 12 wells and 11 wells with Cu above adopted criteria in May 2014 and May 2013, respectively. In previous rounds Cu has been detected at concentrations above environmental criteria in up to 18 wells distributed widely over the monitored area. Cu concentrations above adopted criteria in July 2015 were present in three broad non-contiguous areas. The largest area is centered around the western side of the Binary site (wells MW4, MW22, MW23 and MW24) which is smaller in lateral extent compared to the May 2013 and 2014 results. The other two areas are located on the eastern edge of the site in wells MW6 and MW17 and along the unnamed creek in well MW7. Comparison of the wells with concentrations above environmental criteria from this monitoring event with those measured in May 2014 indicates 2 wells had concentrations higher than measured in May 2014 (wells MW4 and MW6) while 5 wells had the same or lower concentrations.

Lead (Pb)

In July 2015 Pb concentrations were above adopted environmental criteria in 5 wells and were detected below criteria or levels of reporting in all other wells including the **EHP** Background well. This is slightly more wells than in May 2013 and 2014 but a reduction from the 16 wells in which Pb has previously been detected at concentrations above environmental criteria in 16 wells distributed widely over the monitored area. Pb concentrations above adopted criteria in May 2015 were present in one contiguous area of wells on the western boundary of the Binary Industries site, wells MW3, MW4, MW22, MW23 and MW24. The May 2015 results are higher in 4 of the 5 wells but there is no apparent trend or pattern when compared with historical results.

Nickel (Ni)

In July 2015 Ni concentrations were below adopted criteria in all wells. Ni concentrations were detected in 13 wells and were below levels of reporting in 6 wells including the **EHP** Background well. This is a reduction from the 8 widely distributed wells in which Ni has previously been detected at concentrations above environmental. Previously detected Ni concentrations were present in two broad areas centered around the west, south and east sides of the Binary site and in non-contiguous wells along the unnamed creek. The Ni

concentrations in July 2015 were all the same or lower than the concentrations measured in the May 2014 monitoring round.

Zinc(Zn)

In July 2015 Zn concentrations were above adopted environmental criteria in 16 of the 19 wells sampled including the **EHP** Background well. The concentration of Zn in the **EHP** Background well was less than the level measured in all wells with exceedances surrounding the Binary Industries site. This is a slight reduction from the results in 2013 and 2014. In previous rounds Zn has been detected at concentrations above environmental criteria in all wells monitored. The Zn concentrations in July 2015 were lower or the same in 9 wells and higher in 7 wells than measured in May 2014 with no apparent trend or pattern when compared with historical results. Significantly, the Zn concentration measured in well MW4 was consistent with historical results (0.074mg/L) after the highest level ever recorded at the site (0.635mg/L) was measured in May 2014.

Mercury (Hg)

In July 2015 Hg concentrations were below levels of reporting in all 19 wells sampled. In previous rounds Hg has only been detected once (MW7 in 2007) and this was at a concentration below the adopted environmental criteria.

Summary

In summary, metal concentrations above environmental criteria have generally reduced or maintained a similar order of magnitude compared to historical results. The distribution of metal occurrence above criteria and levels of reporting appear to have reduced in area from historical distributions. The distribution of metals in the July 2015 monitoring event reflects two broad areas. The first is centered around the Binary site where Cr, Cu, Pb and/or Zn exceedances are present in wells MW3, MW4, MW5, MW6, MW17, MW19, MW22, MW23 and MW24. The second area is along the unnamed creek from MW7 to MW16 where predominantly Zn exceedances are noted although Cr and Cu also exceed criteria in well MW7 and Cr exceeds criteria in wells MW11 and MW21. Wells MW10, MW14 and MW20 tend to separate these two areas with all metal concentrations at or below the levels of reporting.

There have not been notable increases or decreases of any metals during this monitoring event as variations measured were similar to historical variations. The zinc concentration measured in well MW4 was within historical average in July 2015 after the highest level ever recorded at the site was measured in this well in May 2014. Continued close scrutiny of the zinc results in this well is required in the future.

The level of all heavy metals except Zn were less than the level of reporting and the adopted criteria during this monitoring event in the **EHP** Background well which aids comparison of metals in near-site wells versus background levels. Historically, elevated concentrations (compared to the concentration detected in the **EHP** Background well) of As, Cr, Cu, Pb and/or Zn were detected in as many as 18 of the 21 wells sampled.

Concentrations of three or more metals exceeded the **EHP** Background well concentration in wells MW4, MW7, MW22, MW23 and MW24. Previously there has not been apparent spatial pattern to these wells. During this monitoring event 4 out of the 5 wells which contain three or more metals which exceed background concentrations are located on the west side of the Binary Industries site.

In our opinion it is difficult to state with any certainty whether the spatial distribution of wells with elevated concentrations of Cr and Zn are naturally occurring, are site related or are the result of impact from adjacent industries. However, the spatial distribution of wells with Cu and Pb exceedances are generally centered on the Binary Industries site (wells MW3, MW4, MW6, MW17, MW22, MW23, and MW24).

4.2.2 Pesticide Results

In the July 2015 and previous monitoring events, OC pesticide compounds were not detected at concentrations above the laboratory level of reporting or the adopted assessment criteria in any of the monitoring wells sampled.

The OP pesticide chlorpyrifos was detected adjacent to both the east and west boundaries of the Binary Industries site at concentrations of $0.200\mu g/L$ (MW4) and $0.051\mu g/L$ (MW6) during this monitoring event. These levels of chlorpyrifos are above the laboratory level of reporting $(0.02\mu g/L)$ and the adopted assessment criteria $(0.01\mu g/L)$. Chlorpyrifos was not present above the laboratory level of reporting in any of the remaining wells. Chlorpyrifos was previously detected in well MW2 in June and December 2007 and again in May 2013 at concentrations of 1.6, 0.9 and $0.032\mu g/L$ respectively and in well MW4 at concentrations between $0.03\mu g/L$ to $4.1\mu g/L$ during the November 2006, June 2007, August 2008, May 2012, November 2012, May 2013 and May 2014 monitoring events. These concentrations were above the then current laboratory level of reporting $(0.5\mu g/L)$ and also the adopted assessment criteria. Chlorpyrifos was previously detected in well MW6 at concentration of $0.024\mu g/L$ and $0.057\mu g/L$ during the May 2013 and May 2014 monitoring events.

The OP pesticide dimethoate was only detected in well MW11 in December 2007 at a concentration of $0.60\mu g/L$ which is above the adopted assessment criteria (0.015 $\mu g/L$). No other OP pesticides have been detected during any previous monitoring event.

4.2.3 Herbicide Results

In July 2015 detectable levels of herbicides were measured in ten (10) monitoring wells - Well Nos. MW3, MW4, MW5, MW6, MW7, MW9, MW17, MW19, MW20 and MW23. Most of these are the same wells that have contained detectable levels of herbicides since the November 2012 monitoring event except wells MW7, MW9 and MW17 have not contained detectable herbicides since 2011. Herbicides detected in these wells in this monitoring event included Metolachlor, 2.4-D, MCPA, Triclopyr, 2.6-D, 2.4.6-T, Picloram, Clopyralid, Simazine, Trifluralin and Diuron. Only well MW4 contained all of these compounds while six (6) of these wells (wells MW3, MW5, MW7, MW9, MW17 and MW20) only contain Metolachlor at a concentration which is above the laboratory level of reporting $(0.01\mu g/L)$ but below the established criteria level of $1.0\mu g/L$.

The only compounds detected that have NEPM 2013 guideline levels established are the herbicides 2,4-D ($280\mu g/L$), Simazine ($3.2\mu g/L$) and trifluralin ($2.6\mu g/L$). 2.4-D is the PA herbicide compound detected at the highest concentration at the site ($1,890\mu g/L$ in well MW4 in July 2015) and the only herbicide measured at a level which exceeds NEPM guideline levels. Historically, the level of 2,4-D in all wells has decreased steadily from concentrations measured in 2006/07 with the exception of an increased level measured in May 2014. In well MW4 the level of 2,4-D was as high as $65,300\mu g/L$ in the June 2007 monitoring event and decreased to a concentration of $2,420\mu g/L$ in the May 2013 event before increasing slightly in May 2014 to $4,030\mu g/L$ and falling to $1,890\mu g/L$ in July 2015.

The PA herbicide 2,4-D was also measured during this monitoring event in well MW23 (downgradient of well MW4) at a concentration of 1,260 μ g/L which is above the adopted criteria and in wells MW6 (196 μ g/L), MW19 (194 μ g/L) at levels below the adopted criteria. Historically 2,4-D was not detected in well MW23 prior to November 2012 and was measured at concentrations which were less than the adopted criteria until the May 2014 monitoring event. It should be noted that well MW24, located downgradient of wells MW4 and MW23, did not contain detectable concentrations of any herbicides and is therefore considered to be a good indicator of the extent of impact in this area. In well MW19 2,4-D has been measured at concentrations between less than detectable to 322 μ g/L with an apparent increasing trend. In well MW6 this is the second time 2.4-D has been detected, the first time being in November 2012. Wells MW4 and MW23 are located adjacent to the north west corner of the Binary Industries site while wells MW6 and MW19 are located adjacent to the east boundary (Magnesium Street) of the site.

Historically, the PA herbicide compound with the second highest concentration detected was MCPA. No guideline levels have been established for MCPA. MCPA was detected in monitoring wells MW4, MW6 and MW23 during this monitoring event at concentrations of $26\mu g/L$, $10\mu g/L$ and $12\mu g/L$, respectively. MCPA concentrations have previously been steady or slightly trending lower in all wells except well MW6 where MCPA was detected during this monitoring event for the first time.

Detectable levels of the herbicide Metolachlor were measured in ten (10) monitoring wells - Well Nos. MW3, MW4, MW5, MW6, MW7, MW9, MW17, MW19, MW20 and MW23. during the July 2015 monitoring event. These wells are located in an area centered on the Binary Industries site and downgradient of the north west corner and east side of the Binary Industries site.

Similar to May 2013 and May 2014, Metolachlor was measured at the highest concentration in wells MW4, MW6, MW19 and MW23 (22.5 μ g/L, 50.6 μ g/L, 11.4 μ g/L and 6.49 μ g/L, respectively during this monitoring event). The NEPM 2013 indicates there is insufficient data to determine a freshwater Trigger Value for Metolachlor. However, **EHP** previously recommended a pre-release water quality criteria of 1 μ g/L for Metolachlor for stormwater discharges from the Binary Industries site be used as the adopted criteria for groundwater. Utilising the criteria of 1 μ g/L for Metolachlor, samples from monitoring wells MW4, MW6, MW19 and MW23 exceed the nominated Trigger Value.

Levels of Metolachlor had been showing a decreasing trend or have been generally steady although the concentration measured in well MW6 in July 2015 is the highest level ever measured. All these wells are located immediately adjacent to the Binary Industries site. It should be noted that applying a stormwater criteria to groundwater is a very conservative approach. The concentration of Metolachlor, 2,4-D and MCPA are reported on Table 2, *Groundwater Analytical Results*.

4.2.4 Phenolic Compound Results

During the July 2015 monitoring event detectable levels of Phenolic compounds were measured in 4 of the 8 monitoring wells analysed – wells MW4, MW6, MW19 and MW23. The compounds detected in these wells included 2,4-Dichlorophenol (in all 4 wells) and 2-Chlorophenol (in wells MW4 and MW23 only). 2,4-Dichlorophenol was again the compound measured at the highest concentration in these wells with concentrations measured in MW4

 $(2,860\mu g/L)$ and MW23 $(5,140 \mu g/L)$ located adjacent to the north west corner of the site and in MW6 $(785 \mu g/L)$ MW19 $(2,070 \mu g/L)$ located adjacent to the east boundary of the Binary Industries site.

The only compounds detected that have NEPM 2013 guideline levels established are 2,4-Dichlorophenol and 2-Chlorophenol ($120\mu g/L$ and $340\mu g/L$ adopted criteria, respectively). Concentrations of 2,4-Dichlorophenol in wells MW4, MW6, MW19 and MW23 were the only detections in excess of the adopted criteria. The levels of 2-Clorophenol in wells MW4 and MW23 were both less than adopted criteria.

Phenolic compounds had been generally decreasing in all wells from concentrations in the range of 3,000 to 5,000 μ g/L detected during the June 2007 and subsequent monitoring events. However, the level of Phenolic compounds measured in wells MW4 and MW19 since the November 2012 monitoring event have increased slightly and the levels measured in May 2014 were the highest levels ever measured in well MW4 and the highest level since May 2012 in well MW19. Phenolic compounds were not detectable in well MW23 in April 2008 but similar levels of 2-Clorophenol (49.6 μ g/L) and 2,4-Dichlorophenol (5,680 μ g/L) were measured in this monitoring event and in May 2014.

The concentration of all Phenolic analytes included in the analytical suite for Monitoring Well Nos. MW2, MW3, MW4, MW5, MW6, MW11, MW19, MW21, MW22, MW23, MW24 and Backg'nd (the EHP background well) from this and prior monitoring events are reported on Table 3, *Groundwater Analytical Results, Phenolic Compounds*.

5.0 QUALITY ASSURANCE

All groundwater samples collected during this monitoring event were collected in accordance with the Quality Assurance and Quality Control Procedures outlined in Appendix B. Groundwater field duplicate and triplicate analysis results are included in the laboratory reports in Appendix A and summarized in Table Nos. 2 and 3. Laboratory QA procedures are described in Appendix B and results reported in the ALS Quality Assurance Report included in Appendix A.

Data assessment of laboratory results and COC documentation indicates that:

- Sample integrity and container requirements were documented as acceptable;
- Holding time compliances were documented as acceptable;
- Matrix Spikes spike results were within acceptable control limits;
- Laboratory duplicate % RPD results were acceptable; and
- All laboratory QA/QC method blanks were found to be acceptable.

The Relative Percentage Differences (RPDs) for heavy metals and herbicide compounds in groundwater Sample No. DUP1/MW19 (ALS) ranged from +4.7% to -36.1% while the RPDs for heavy metals and herbicide compounds in groundwater Sample No. TRIP1/MW19 (SGS/ALS) ranged from +2.1% to -20.5%. RPDs for DUP2/MW23 (SGS/ALS) ranged from +4.9% to -73.3%. The RPDs for phenolic compounds in groundwater Sample No. DUP1/MW19 (ALS) ranged from +0.0% to -7.4% while the RPDs for Sample Nos. TRIP1/MW19 and DUP2/MW23 (both SGS/ALS) ranged from +157% to -83%.

The RPD results indicate acceptable precision within the whole process from sampling, sample preparation and laboratory analysis by both the primary laboratory ALS and the alternate laboratory SGS. However, a lower level of precision was apparent for the phenolic compounds between the two laboratories due to the high concentrations measured in the samples chosen for comparison.

The organic and inorganic data reported for this Binary Industries Groundwater Monitoring event can be considered to be of sufficient quality to enable valid assessment of site groundwater conditions and to achieve the project objectives.

Full NATA-certified laboratory reports from ALS and SGS for all parameters are included in Appendix A of this report.

6.0 CONCLUSIONS AND RECOMMENDATIONS

GeoEnvironmental Consultants conclude, on the basis of this monitoring event that groundwater conditions at the site have stabilized and are sufficient to support a qualitative and quantitative risk assessment of the site.

Elevated concentrations (compared to the concentration detected in the EHP Background well) of Cr, Cu, Pb and/or Zn were detected in up to 15 of the 18 monitoring wells surrounding the Binary Industries site included in this sampling event. Concentrations of three or more metals exceeded the **EHP** Background well concentration in wells MW4, MW7, MW22, MW23 and MW24. Previously there has not been an apparent spatial pattern to these wells. During this monitoring event 4 out of the 5 wells which contain three or more metals which exceed background concentrations are located on the west side of the Binary Industries site (wells MW4, MW22, MW23 and MW24).

The concentration of herbicides and phenolic compounds has been generally decreasing in all wells from concentrations measured the June 2007. Measured concentrations increased significantly during the May 2014 monitoring event but have generally returned to levels consistent with levels measured prior to 2014. Based on the results of this groundwater monitoring event **GeoEnvironmental Consultants** conclude that there is impact from the pesticides, herbicides and phenolic compounds present in monitoring wells located around the perimeter of the Binary Industries facility (in the area of Monitoring Well Nos. MW3, MW4, MW5, MW6, MW17, MW19 and MW23).

In our opinion it is difficult to state with any certainty whether the spatial distribution of wells with elevated concentrations of Cr and Zn are naturally occurring, are site related or are the result of impact from adjacent industries. However, the spatial distribution of wells with Cu and Pb exceedances are generally centered on the Binary Industries site (wells MW3, MW4, MW6, MW17, MW22, MW23, and MW24) and appear to relate closely with the wells where there is impact by pesticides, herbicides and phenolic compounds.

Three monitoring wells (wells MW1, MW2 and MW19) were damaged and/or destroyed by earthmoving equipment since completion of the May 2014 monitoring event when damage to well MW4 was noted. Both wells MW4 and MW19 were able to be repaired and resurveyed so that accurate static water level elevations could be determined and groundwater samples were obtained. However, wells MW1 and MW2 were destroyed.

It is our opinion that the data obtained from wells MW4 and MW19 appears consistent with historical results and results obtained from similar wells on this site. Further sampling of wells MW4 and MW19 are recommended with results closely scrutinized to evaluate the integrity of data from the wells.

GeoEnvironmental Consultants recommend that **EHP** conduct further monitoring of groundwater conditions at the site on a yearly basis until a qualitative and quantitative risk assessment of the remaining contamination is conducted. The results of this risk assessment can be used to evaluate future site risks, management and monitoring options.

The results of this and prior monitoring events continue to indicate evidence of downgradient migration of herbicide and phenolic compound impact away from MW4 in a north westerly direction toward wells MW23 and MW24. The extent of this impact has not been noted in well MW24 thus far. However, review of the results of future monitoring events may indicate the need to install additional monitoring wells further north west of well MW24 or in a north to north easterly direction away from MW4 and the Binary Dam area.

7.0 LIMITATIONS OF REPORT

GeoEnvironmental Consultants have prepared this groundwater monitoring report in accordance with generally accepted consulting practice. No warranty, expressed or implied, is made as to the results included in this report. The report has not been prepared for use by parties other than the **EHP** and their authorised Third Parties. It may not contain sufficient information for the purposes of other parties or for other uses and we accept no responsibility for other use of the data.

To the best of our knowledge, information contained in this report is accurate at the date of issue. However, subsurface conditions, including contaminant concentrations, are subject to change in a limited time. In addition, monitoring has been limited in extent and depth and there are always some variations in subsurface conditions across a site. Therefore, it is unlikely that the measurements and values obtained by sampling and analysis during this program will represent the extremes of conditions that exist within the site.

for GeoEnvironmental Consultants Pty Ltd

Michael Tisdall BSc. PGDipSc.

Environmental Scientist

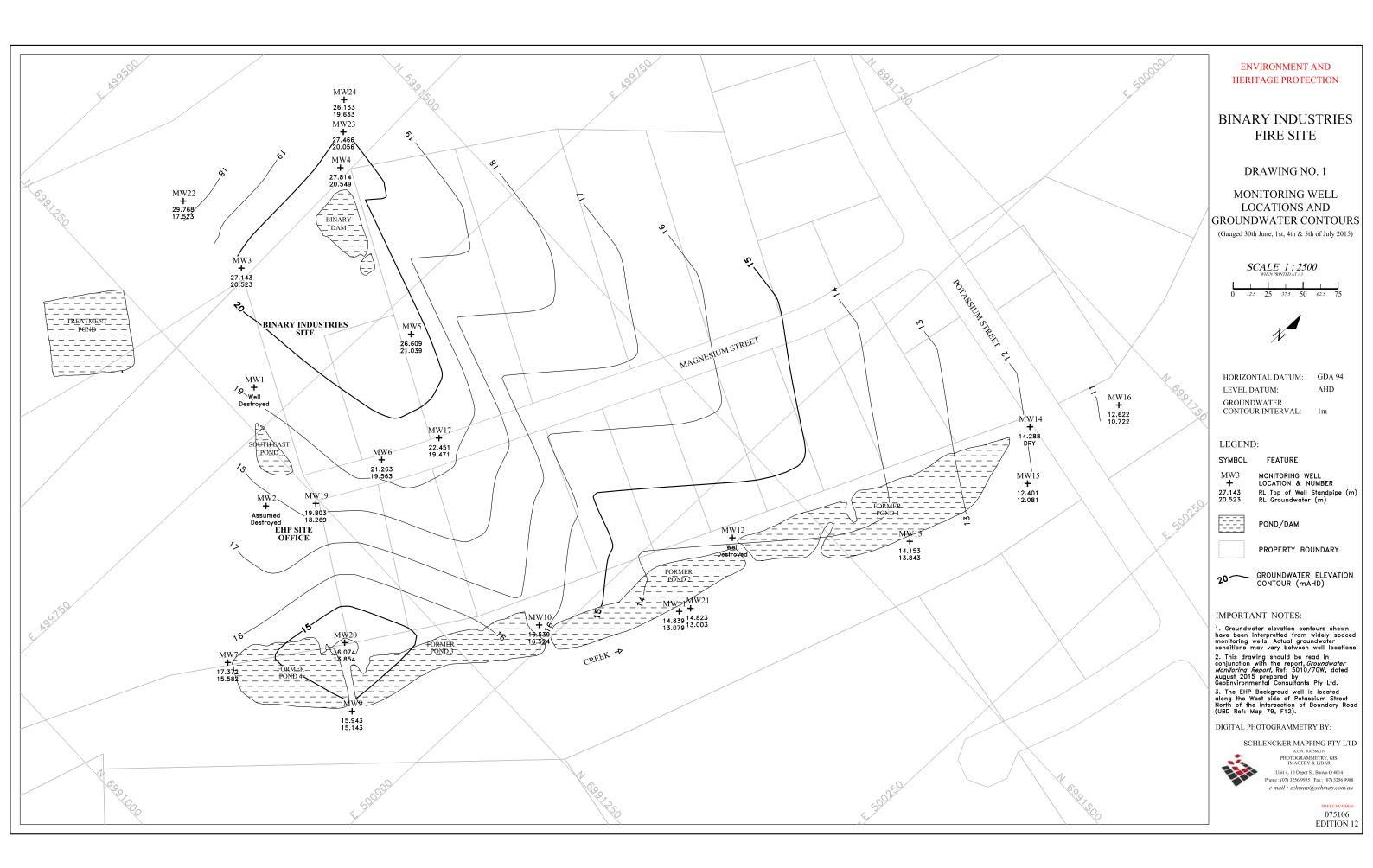


TABLE 1 Well Condition, Groundwater Gauging Results and Field Water Quality Parameters EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (July 2015)

			Elevation		Groundwater	TOC to		Electrical		Sample		
Monitoring		Volume	TOC,	Groundwater	Elevation,	Surface	Sampling	Conductivity,		Temperature		
Well ID	Purge Date	Purged, L	mAHD	Depth BTOC, m	mAHD	Level, m	Date	μS/cm	pН	, C	Sample Comments	Well Condition
MW 1	1/07/2015		21.871		Well destroy						No sample, well destroyed.	Well apparently damaged by construction equipment, full of soil.
MW 2	1/07/2015		18.783		ot located, assur	me destroyed					No sample, well destroyed.	Well assumed destroyed by construction equipment, not located.
MW 3	30/06/2015	21L/10L	27.143	6.62	20.523	0.570	4/07/2015	503	4.13	21.6	slightly opaque, slight odour.	OK but screen becoming root clogged, standpipe, padlocked.
												OK, Gattic, well resurveyed on 13th June 2014 after well reinstated
MW 4 *	30/06/2015	8L/5L	27.814	7.09	20.549	0.10	4/07/2015	741	4.58	20.8	slightly opaque, moderate odour.	and flush-mounted gattic cover installed.
MW 5	1/07/2015	150L+	26.609	5.57	21.039	0.455	5/07/2015	305	4.91	21.0	clear, slight odour.	OK, standpipe, padlocked.
MW 6	30/06/2015	15L/10L	21.263	1.70	19.563	-0.06	4/07/2015	213	4.85	22.2	slightly opaque, slight odour.	OK, Gattic, gatic screws removed, well potentially sampled by others?
MW 7	30/06/2015	10L/6L	17.372	1.79	15.582	0.55	5/07/2015	338	5.38	22.6	slightly opaque, slight stale odour	OK, standpipe, NO padlock.
MW 9	30/06/2015	25L/20L	15.943	0.80	15.143	0.715	5/07/2015	287	6.11	21.7	slightly opaque, no odour.	Standpipe knocked & bent, padlocked
MW 10	1/07/2015	100L+	16.539	0.015	16.524	1.090	5/07/2015	206	6.18	21.2	clear, no odour.	OK, standpipe, NO padlock, PVC above standpipe.
MW 11	30/06/2015	25L/10L	14.839	1.76	13.079	0.800	5/07/2015	341	5.55	20.8	clear, no odour.	OK, standpipe, padlocked.
MW 12		nil	14.606		Well destroy	/ed					No sample, well destroyed.	Well apparently destroyed by construction of fire access road
MW 13	30/06/2015	20L/15L	14.153	0.31	13.843	0.8	5/07/2015	178	5.41	21.5	clear, no odour.	OK, standpipe, NO padlock, PVC above standpipe.
MW 14		nil	14.288	dry	dry	0.59					No sample, well filled with fine silt.	OK, standpipe, padlocked.
MW 15	1/07/2015	20L/15L	12.401	0.32	12.081	1.52	4/07/2015	201	5.32	22.8	slightly opaque, no odour.	OK, standpipe, NO padlock, PVC above standpipe.
MW 16	1/07/2015	10L/6L	12.622	1.90	10.722	0.77	4/07/2015	316	5.71	22.4	slightly opaque, very slight stale odour	OK, standpipe, padlocked.
MW 17	1/07/2015	15L/10L	22.451	2.98	19.471	-0.12	4/07/2015	214	5.28	23.1	slightly opaque, very slight odour.	OK, Gattic,
												Standpipe damaged by construction in area, PVC bent over below ground level. Cut PVC casing, installed flush-mounted gattic cover and
MW 19 *	5/07/2015	200L+	19.803	1.534	18.269	-0.026	5/07/2015	348	5.05	21.6	clear, moderate odour.	resurveyed TOC on 1st August 2015.
MW 20	5/07/2015	200L+	16.074	2.22	13.854	0.7approx	5/07/2015	317	6.31	19.8	slightly opaque, no odour.	250mm dia, PVC Cap
MW 21	30/06/2015	30L/10L	14.823	1.82	13.003	0.85	5/07/2015	350	5.24	20.5	clear, slight stale odour	OK, standpipe, padlocked.
MW 22	30/06/2015	15L/10L	29.768	12.245	17.523	0.8	4/07/2015	229	5.07	21.7	slightly opaque, no odour.	OK, standpipe, padlocked.
MW 23	30/06/2015	10L/10L	27.466	7.41	20.056	0.82	4/07/2015	357	3.99	20.9	slightly opaque, no odour.	OK, standpipe, padlocked.
MW 24	30/06/2015	15L/10L	26.133	6.50	19.633	0.88	4/07/2015	220	4.27	21.3	slightly opaque, no odour.	OK, standpipe, padlocked.
Backg'nd	4/07/2015	300+	Unknown	4.33	Unknown	-0.09	4/07/2015	1048	3.94	20.1	clear, no odour	OK, gatic.

Notes: BTOC Below top of casing TOC Top of casing AHD Australian Height Datum

* Wells damaged and reinstated by cutting off PVC casing and installing a flush-mounted gattic cover. New elevation shown.

Duplicate sample (DUP 1) and Triplicate sample (TRIP1) from MW19, Duplicate sample (DUP 2) from MW23, Rinsate sample (RIN 1) from Backg'nd well.

GeoEnvironmental Consultants Pty Ltd 5010_7 GW Table 1 2 n 3 Data Jul15.xlsx

Groundwater Analytical Results Metals, Pesticides and Herbicides

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (December 2006 to July 2015)

Page 1 of 5

Sample No. 1 9 11 2 MW 1 2 2 2 6 6 1:	Sampling Date 1/07/2015 9/05/2014 19/05/2013 2/11/2012 21/05/2012 22/07/2011 21/08/2008 6/12/2007 13/06/2007 1/11/2/2006	0.006 0.001 0.009 0.01 <lor <lor <lor< th=""><th><pre></pre></th><th>mg/L O.001 <lor <lor="" <lor<="" th=""><th>mg/L 0.002 0.003 0.003 0.001 0.002</th><th>mg/L Insufficier <lor <lor="" <lor<="" th=""><th>mg/L nt sample for 0.002 0.002 0.003</th><th>mg/L analysis - W 0.022 0.019</th><th>mg/L rell dry and fu</th><th>OC Pesticides µg/L µg/L all of sediment</th><th>OP Pesticides - Chlorpyrifos µg/L nt <lor< th=""><th>Herbicide - Metolachlor µg/L</th><th>Phenoxya Herbi 2,4-D µg/L</th><th>MCPA μg/L</th></lor<></th></lor></th></lor></th></lor<></lor </lor 	<pre></pre>	mg/L O.001 <lor <lor="" <lor<="" th=""><th>mg/L 0.002 0.003 0.003 0.001 0.002</th><th>mg/L Insufficier <lor <lor="" <lor<="" th=""><th>mg/L nt sample for 0.002 0.002 0.003</th><th>mg/L analysis - W 0.022 0.019</th><th>mg/L rell dry and fu</th><th>OC Pesticides µg/L µg/L all of sediment</th><th>OP Pesticides - Chlorpyrifos µg/L nt <lor< th=""><th>Herbicide - Metolachlor µg/L</th><th>Phenoxya Herbi 2,4-D µg/L</th><th>MCPA μg/L</th></lor<></th></lor></th></lor>	mg/L 0.002 0.003 0.003 0.001 0.002	mg/L Insufficier <lor <lor="" <lor<="" th=""><th>mg/L nt sample for 0.002 0.002 0.003</th><th>mg/L analysis - W 0.022 0.019</th><th>mg/L rell dry and fu</th><th>OC Pesticides µg/L µg/L all of sediment</th><th>OP Pesticides - Chlorpyrifos µg/L nt <lor< th=""><th>Herbicide - Metolachlor µg/L</th><th>Phenoxya Herbi 2,4-D µg/L</th><th>MCPA μg/L</th></lor<></th></lor>	mg/L nt sample for 0.002 0.002 0.003	mg/L analysis - W 0.022 0.019	mg/L rell dry and fu	OC Pesticides µg/L µg/L all of sediment	OP Pesticides - Chlorpyrifos µg/L nt <lor< th=""><th>Herbicide - Metolachlor µg/L</th><th>Phenoxya Herbi 2,4-D µg/L</th><th>MCPA μg/L</th></lor<>	Herbicide - Metolachlor µg/L	Phenoxya Herbi 2,4-D µg/L	MCPA μg/L
MW 1 2 2 2 6 6	1/07/2015 9/05/2014 19/05/2013 2/11/2012 21/05/2012 2/07/2011 11/08/2008 6/12/2007 13/06/2007	0.006 0.001 0.009 0.01 <lor <lor <lor< td=""><td><lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>μg/L ill of sedimen</td><td>Chlorpyrifos µg/L nt</td><td>μg/L</td><td>2,4-D µg/L <lor< td=""><td>MCPA µg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor></td></lor<></lor </lor 	<lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>μg/L ill of sedimen</td><td>Chlorpyrifos µg/L nt</td><td>μg/L</td><td>2,4-D µg/L <lor< td=""><td>MCPA µg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor>	0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>μg/L ill of sedimen</td><td>Chlorpyrifos µg/L nt</td><td>μg/L</td><td>2,4-D µg/L <lor< td=""><td>MCPA µg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor 	0.002 0.003 0.003 0.001	Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>μg/L ill of sedimen</td><td>Chlorpyrifos µg/L nt</td><td>μg/L</td><td>2,4-D µg/L <lor< td=""><td>MCPA µg/L</td></lor<></td></lor<></lor </lor 	0.002 0.002	analysis - W	rell dry and fu	μg/L ill of sedimen	Chlorpyrifos µg/L nt	μg/L	2,4-D µg/L <lor< td=""><td>MCPA µg/L</td></lor<>	MCPA µg/L
9 11 2 MW 1 2 2 2 2 6 6	9/05/2014 19/05/2013 2/11/2012 2/105/2012 2/07/2011 2/108/2008 6/12/2007 1/12/2006	0.006 0.001 0.009 0.01 <lor <lor <lor< td=""><td><lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>μg/L</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor></td></lor<></lor </lor 	<lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>μg/L</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor>	0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>μg/L</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor 	0.002 0.003 0.003 0.001	Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>μg/L</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor 	0.002 0.002	analysis - W	rell dry and fu	III of sedimen	μg/L		μg/L <lor< td=""><td>μg/L</td></lor<>	μg/L
9 11 2 MW 1 2 2 2 2 6 6	9/05/2014 19/05/2013 2/11/2012 2/105/2012 2/07/2011 2/108/2008 6/12/2007 1/12/2006	0.006 0.001 0.009 0.01 <lor <lor <lor< td=""><td><lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor></td></lor<></lor </lor 	<lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor>	0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor 	0.002 0.003 0.003 0.001	Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td>μg/L <lor< td=""><td>μg/L</td></lor<></td></lor<></lor </lor 	0.002 0.002	analysis - W	rell dry and fu	III of sedimen	nt		μg/L <lor< td=""><td>μg/L</td></lor<>	μg/L
9 11 2 MW 1 2 2 2 2 6 6	9/05/2014 19/05/2013 2/11/2012 2/105/2012 2/07/2011 2/108/2008 6/12/2007 1/12/2006	0.006 0.001 0.009 0.01 <lor <lor <lor< td=""><td><lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor></td></lor<></lor </lor 	<lor 0.0002="" 0.0004<="" <lor="" td=""><td>0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor </td></lor>	0.001 <lor <lor <lor <lor <lor< td=""><td>0.002 0.003 0.003 0.001</td><td>Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></lor </lor </td></lor<></lor </lor </lor </lor 	0.002 0.003 0.003 0.001	Insufficier <lor <lor <lor< td=""><td>0.002 0.002</td><td>analysis - W</td><td>rell dry and fu</td><td>III of sedimen</td><td>nt</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></lor </lor 	0.002 0.002	analysis - W	rell dry and fu	III of sedimen	nt		<lor< td=""><td></td></lor<>	
9 11 2 MW 1 2 2 2 2 6 6	9/05/2014 19/05/2013 2/11/2012 2/105/2012 2/07/2011 2/108/2008 6/12/2007 1/12/2006	0.001 0.009 0.01 <lor <lor <lor 0.001</lor </lor </lor 	<lor <lor <lor <lor 0.0002 0.0004</lor </lor </lor </lor 	<lor< td=""><td>0.003 0.003 0.001</td><td><lor <lor <lor< td=""><td>0.002 0.002</td><td>0.022</td><td><lor< td=""><td></td><td></td><td><lor< td=""><td></td><td>LOD</td></lor<></td></lor<></td></lor<></lor </lor </td></lor<>	0.003 0.003 0.001	<lor <lor <lor< td=""><td>0.002 0.002</td><td>0.022</td><td><lor< td=""><td></td><td></td><td><lor< td=""><td></td><td>LOD</td></lor<></td></lor<></td></lor<></lor </lor 	0.002 0.002	0.022	<lor< td=""><td></td><td></td><td><lor< td=""><td></td><td>LOD</td></lor<></td></lor<>			<lor< td=""><td></td><td>LOD</td></lor<>		LOD
MW 1 2: 2 2: 6 1:	9/05/2013 2/11/2012 2/1/05/2012 2/07/2011 21/08/2008 6/12/2007 13/06/2007 1/12/2006	0.001 0.009 0.01 <lor <lor <lor 0.001</lor </lor </lor 	<lor <lor <lor <lor 0.0002 0.0004</lor </lor </lor </lor 	<lor< td=""><td>0.003 0.003 0.001</td><td><lor <lor< td=""><td>0.002</td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>100</td></lor<></td></lor<></td></lor<></td></lor<></lor </td></lor<>	0.003 0.003 0.001	<lor <lor< td=""><td>0.002</td><td></td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>100</td></lor<></td></lor<></td></lor<></td></lor<></lor 	0.002			<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>100</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>100</td></lor<></td></lor<>	<lor< td=""><td></td><td>100</td></lor<>		100
MW 1 2: 2: 2: 6: 6: 1:	2/11/2012 21/05/2012 22/07/2011 21/08/2008 6/12/2007 13/06/2007 1/12/2006	0.009 0.01 <lor <lor <lor 0.001</lor </lor </lor 	<lor <lor <lor 0.0002 0.0004</lor </lor </lor 	<lor <lor <lor <lor< td=""><td>0.003 0.001</td><td><lor< td=""><td></td><td>0.019</td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""></lor<></td></lor<></td></lor<></lor </lor </lor 	0.003 0.001	<lor< td=""><td></td><td>0.019</td><td></td><td></td><td></td><td></td><td></td><td><lor< td=""></lor<></td></lor<>		0.019						<lor< td=""></lor<>
MW 1 2: 2: 6: 6: 1:	21/05/2012 2/07/2011 21/08/2008 6/12/2007 13/06/2007 1/12/2006	0.01 <lor <lor <lor 0.001</lor </lor </lor 	<lor <lor 0.0002 0.0004</lor </lor 	<lor <lor <lor< td=""><td>0.001</td><td></td><td>0.003</td><td></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor </lor 	0.001		0.003		<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
2 2 6 1;	2/07/2011 21/08/2008 6/12/2007 13/06/2007 1/12/2006	<lor <lor <lor 0.001</lor </lor </lor 	<lor 0.0002 0.0004</lor 	<lor <lor< td=""><td></td><td><lor< td=""><td></td><td>0.078</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor 		<lor< td=""><td></td><td>0.078</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>		0.078	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
2 ² 6	21/08/2008 6/12/2007 13/06/2007 1/12/2006	<lor <lor 0.001</lor </lor 	0.0002 0.0004	<lor< td=""><td>0.002</td><td></td><td>0.002</td><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.02</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002		0.002	0.009	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.02</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.02</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.02</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.02	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
6	6/12/2007 13/06/2007 1/12/2006	<lor 0.001</lor 	0.0004			<lor< td=""><td>0.003</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.042	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
1;	13/06/2007 1/12/2006	0.001			0.003	0.004	0.010	0.094	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.007	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006			<lor< td=""><td>0.004</td><td>0.002</td><td>0.005</td><td>0.071</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.002	0.005	0.071	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
			<lor< td=""><td>0.001</td><td>0.005</td><td>0.003</td><td>0.014</td><td>0.104</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.005	0.003	0.014	0.104	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
1	4/07/0045	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.010</td><td>0.056</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.001</td><td><lor< td=""><td>0.010</td><td>0.056</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td>0.010</td><td>0.056</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.010	0.056	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
1	1/07/2015				Well assu	med to have	been destroy	ed by consti	uction equipr	ment, could n	not be located.			
	9/05/2014	0.008	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.176</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.176</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.176</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.176</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.176</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.176</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.176	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2013	0.009	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.045</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td>0.219</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.045</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td>0.219</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.045</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td>0.219</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.045</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td>0.219</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.045	<lor< td=""><td><lor< td=""><td>0.032</td><td>0.219</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.032</td><td>0.219</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.032	0.219	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	0.013	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.005</td><td>0.041</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.260</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td>0.005</td><td>0.041</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.260</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td>0.005</td><td>0.041</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.260</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.041	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.260</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.260</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.260</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.260	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/05/2012	0.012	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.510</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.510</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.003</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.510</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.510</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.510</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.510</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.510	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/07/2011	0.009	0.0002	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.007</td><td>0.088</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.520</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.007</td><td>0.088</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.520</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.007	0.088	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.520</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.520</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.520</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.006</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.006</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td>0.006</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td>0.006</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	0.023	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>8.44</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<u>8.44</u>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	7/12/2007	<lor< td=""><td>0.0004</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.009</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td>0.9</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0004	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.009</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td>0.9</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.009</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td>0.9</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.009	0.042	<lor< td=""><td><lor< td=""><td>0.9</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.9</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.9	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	0.002	0.0002	0.002	0.011	0.003	0.019	0.062	<lor< td=""><td><lor< td=""><td><u>1.6</u></td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>1.6</u></td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<u>1.6</u>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.009</td><td>0.053</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.009</td><td>0.053</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.009</td><td>0.053</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.009	0.053	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.005</td><td>0.004</td><td>0.109</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.034</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.005</td><td>0.004</td><td>0.109</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.034</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.005</td><td>0.004</td><td>0.109</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.034</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.005	0.004	0.109	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.034</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.034</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.034</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.034	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	8/05/2014	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.004</td><td>0.012</td><td>0.006</td><td>0.270</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.004</td><td>0.012</td><td>0.006</td><td>0.270</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.004	0.012	0.006	0.270	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	8/05/2013	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.009</td><td>0.016</td><td>0.006</td><td>0.082</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.009</td><td>0.016</td><td>0.006</td><td>0.082</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.009	0.016	0.006	0.082	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/11/2012	<lor< td=""><td>0.0001</td><td>0.002</td><td><u>0.005</u></td><td><u>0.021</u></td><td>0.008</td><td><u>0.113</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	0.002	<u>0.005</u>	<u>0.021</u>	0.008	<u>0.113</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/05/2012	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.007</td><td>0.027</td><td>0.006</td><td>0.094</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.007</td><td>0.027</td><td>0.006</td><td>0.094</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.007	0.027	0.006	0.094	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/07/2011	<lor< td=""><td><lor< td=""><td>0.003</td><td><u>0.004</u></td><td>0.025</td><td>0.007</td><td><u>0.162</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td><u>0.004</u></td><td>0.025</td><td>0.007</td><td><u>0.162</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<u>0.004</u>	0.025	0.007	<u>0.162</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.008</td><td>0.007</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.008</td><td>0.007</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.008</td><td>0.007</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.008	0.007	0.036	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	6/12/2007	<lor< td=""><td>0.0001</td><td><lor< td=""><td>0.002</td><td>0.003</td><td><u>0.018</u></td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	<lor< td=""><td>0.002</td><td>0.003</td><td><u>0.018</u></td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	<u>0.018</u>	0.032	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<>	Not analysed	13	<lor< td=""></lor<>
	14/06/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.004</td><td>0.002</td><td>0.017</td><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.004</td><td>0.002</td><td>0.017</td><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td>0.002</td><td>0.017</td><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.002	0.017	<u>0.018</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>13</td><td><lor< td=""></lor<></td></lor<>	Not analysed	13	<lor< td=""></lor<>
	29/11/2006	<lor< td=""><td>0.0004</td><td><lor< td=""><td>0.005</td><td>0.006</td><td>0.034</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0004	<lor< td=""><td>0.005</td><td>0.006</td><td>0.034</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.006	0.034	0.046	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.005</td><td>0.010</td><td>0.002</td><td>0.074</td><td><lor< td=""><td><lor< td=""><td>0.200</td><td><u>22.5</u></td><td><u>1890</u></td><td>26</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.005</td><td>0.010</td><td>0.002</td><td>0.074</td><td><lor< td=""><td><lor< td=""><td>0.200</td><td><u>22.5</u></td><td><u>1890</u></td><td>26</td></lor<></td></lor<></td></lor<>	0.002	0.005	0.010	0.002	0.074	<lor< td=""><td><lor< td=""><td>0.200</td><td><u>22.5</u></td><td><u>1890</u></td><td>26</td></lor<></td></lor<>	<lor< td=""><td>0.200</td><td><u>22.5</u></td><td><u>1890</u></td><td>26</td></lor<>	0.200	<u>22.5</u>	<u>1890</u>	26
	8/05/2014	0.005	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.004</td><td>0.635</td><td><lor< td=""><td><lor< td=""><td><u>0.352</u></td><td><u>30.7</u></td><td><u>4030</u></td><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.004</td><td>0.635</td><td><lor< td=""><td><lor< td=""><td><u>0.352</u></td><td><u>30.7</u></td><td><u>4030</u></td><td>40</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td>0.635</td><td><lor< td=""><td><lor< td=""><td><u>0.352</u></td><td><u>30.7</u></td><td><u>4030</u></td><td>40</td></lor<></td></lor<></td></lor<>	0.004	0.635	<lor< td=""><td><lor< td=""><td><u>0.352</u></td><td><u>30.7</u></td><td><u>4030</u></td><td>40</td></lor<></td></lor<>	<lor< td=""><td><u>0.352</u></td><td><u>30.7</u></td><td><u>4030</u></td><td>40</td></lor<>	<u>0.352</u>	<u>30.7</u>	<u>4030</u>	40
	8/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.002</td><td><lor< td=""><td><u>0.014</u></td><td><lor< td=""><td><lor< td=""><td><u>0.171</u></td><td><u>3.82</u></td><td><u>2420</u></td><td>23</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.002</td><td><lor< td=""><td><u>0.014</u></td><td><lor< td=""><td><lor< td=""><td><u>0.171</u></td><td><u>3.82</u></td><td><u>2420</u></td><td>23</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.002</td><td><lor< td=""><td><u>0.014</u></td><td><lor< td=""><td><lor< td=""><td><u>0.171</u></td><td><u>3.82</u></td><td><u>2420</u></td><td>23</td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.002	<lor< td=""><td><u>0.014</u></td><td><lor< td=""><td><lor< td=""><td><u>0.171</u></td><td><u>3.82</u></td><td><u>2420</u></td><td>23</td></lor<></td></lor<></td></lor<>	<u>0.014</u>	<lor< td=""><td><lor< td=""><td><u>0.171</u></td><td><u>3.82</u></td><td><u>2420</u></td><td>23</td></lor<></td></lor<>	<lor< td=""><td><u>0.171</u></td><td><u>3.82</u></td><td><u>2420</u></td><td>23</td></lor<>	<u>0.171</u>	<u>3.82</u>	<u>2420</u>	23
- (- /	8/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><u>0.198</u></td><td><u>4.08</u></td><td><u>2250</u></td><td>21</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><u>0.198</u></td><td><u>4.08</u></td><td><u>2250</u></td><td>21</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><u>0.198</u></td><td><u>4.08</u></td><td><u>2250</u></td><td>21</td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.002	<lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><u>0.198</u></td><td><u>4.08</u></td><td><u>2250</u></td><td>21</td></lor<></td></lor<></td></lor<>	0.012	<lor< td=""><td><lor< td=""><td><u>0.198</u></td><td><u>4.08</u></td><td><u>2250</u></td><td>21</td></lor<></td></lor<>	<lor< td=""><td><u>0.198</u></td><td><u>4.08</u></td><td><u>2250</u></td><td>21</td></lor<>	<u>0.198</u>	<u>4.08</u>	<u>2250</u>	21
	1/11/2012	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.004</td><td>0.002</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><u>0.27</u></td><td><u>4.62</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.003</td><td>0.004</td><td>0.002</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><u>0.27</u></td><td><u>4.62</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.004	0.002	0.034	<lor< td=""><td><lor< td=""><td><u>0.27</u></td><td><u>4.62</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>0.27</u></td><td><u>4.62</u></td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<u>0.27</u>	<u>4.62</u>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/05/2012	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.006</td><td>0.005</td><td>0.003</td><td>0.041</td><td><lor< td=""><td><lor< td=""><td>0.03</td><td><u>5.19</u></td><td>2060</td><td>44</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.006</td><td>0.005</td><td>0.003</td><td>0.041</td><td><lor< td=""><td><lor< td=""><td>0.03</td><td><u>5.19</u></td><td>2060</td><td>44</td></lor<></td></lor<></td></lor<>	0.003	0.006	0.005	0.003	0.041	<lor< td=""><td><lor< td=""><td>0.03</td><td><u>5.19</u></td><td>2060</td><td>44</td></lor<></td></lor<>	<lor< td=""><td>0.03</td><td><u>5.19</u></td><td>2060</td><td>44</td></lor<>	0.03	<u>5.19</u>	2060	44
	2/07/2011	<lor< td=""><td><lor< td=""><td>0.003</td><td>800.0</td><td>0.010</td><td>0.003</td><td>0.070</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>2.91</u></td><td><u>3020</u></td><td>36</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>800.0</td><td>0.010</td><td>0.003</td><td>0.070</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>2.91</u></td><td><u>3020</u></td><td>36</td></lor<></td></lor<></td></lor<></td></lor<>	0.003	800.0	0.010	0.003	0.070	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>2.91</u></td><td><u>3020</u></td><td>36</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>2.91</u></td><td><u>3020</u></td><td>36</td></lor<></td></lor<>	<lor< td=""><td><u>2.91</u></td><td><u>3020</u></td><td>36</td></lor<>	<u>2.91</u>	<u>3020</u>	36
	21/08/2008	<lor< td=""><td>0.0002</td><td>0.004</td><td><u>800.0</u></td><td>0.022</td><td>0.008</td><td>0.112</td><td><lor< td=""><td><lor< td=""><td><u>1.6</u></td><td><u>38.3</u></td><td>28600</td><td>273</td></lor<></td></lor<></td></lor<>	0.0002	0.004	<u>800.0</u>	0.022	0.008	0.112	<lor< td=""><td><lor< td=""><td><u>1.6</u></td><td><u>38.3</u></td><td>28600</td><td>273</td></lor<></td></lor<>	<lor< td=""><td><u>1.6</u></td><td><u>38.3</u></td><td>28600</td><td>273</td></lor<>	<u>1.6</u>	<u>38.3</u>	28600	273
	7/12/2007	0.001	0.0002	0.006	0.021	0.016	0.008	0.137	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>34200</td><td>519</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>34200</td><td>519</td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>34200</td><td>519</td></lor<>	Not analysed	34200	519
	14/06/2007	0.004	<lor< td=""><td><u>0.010</u></td><td>0.031</td><td><u>0.010</u></td><td>0.009</td><td>0.130</td><td><lor< td=""><td><lor< td=""><td><u>1.5</u></td><td>Not analysed</td><td><u>65300</u></td><td>592</td></lor<></td></lor<></td></lor<>	<u>0.010</u>	0.031	<u>0.010</u>	0.009	0.130	<lor< td=""><td><lor< td=""><td><u>1.5</u></td><td>Not analysed</td><td><u>65300</u></td><td>592</td></lor<></td></lor<>	<lor< td=""><td><u>1.5</u></td><td>Not analysed</td><td><u>65300</u></td><td>592</td></lor<>	<u>1.5</u>	Not analysed	<u>65300</u>	592
29	29/11/2006	0.004	0.0001	0.016	0.022	0.012	0.005	0.104	<lor< td=""><td><lor< td=""><td>4.1</td><td>Not analysed</td><td>53200</td><td>186</td></lor<></td></lor<>	<lor< td=""><td>4.1</td><td>Not analysed</td><td>53200</td><td>186</td></lor<>	4.1	Not analysed	53200	186
Level of Reporting (I	(LOR)	0.001	0.0001	0.001	0.001	0.001	0.001	0.005	0.0001	0.5/2.0	0.02/2.0	0.01	10	10
Freshwater Guideli	lines	0.013	0.0002	0.001	0.0014	0.0034	0.011	0.008	0.00006	Varies	0.01	1.0	280	ID

Guidelines: NEPM (2013): Groundwater Investigation Levels (GILs) - Fresh waters. ANZECC 2000 freshwater guidelines prior to 2013.

Metolachlor value recommended by EHP for Binary Industries site.

ID - indicates insufficient data for determination of a reliable GILs Value

Exceedences: Bolded and underlined results exceed nominated assessment criteria

5010_7 GW Table 1 2 n 3 Data Juli 15.xlsx

GeoEnvironmental Consultants Pty Ltd

Groundwater Analytical Results Metals, Pesticides and Herbicides

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (December 2006 to July 2015)

Page 2 of 5

Monitoring Well ID/	Sampling	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	OC	OP	Herbicide -	Phenoxya	acetic Acid
Sample No.	Date								-	Pesticides	Pesticides -	Metolachlor	Herb	icides
											Chlorpyrifos		2,4-D	МСРА
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	µg/L
	5/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.021	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.841</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.841	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.047	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.148</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.148	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.155</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.155	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.035	<lor< td=""><td><lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>1.86</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	1.86	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 5	22/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>14.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	14.40	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP2 (SGS)	22/05/2012	<lor< td=""><td>0.0018</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>15.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0018	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>15.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.003</td><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>15.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>15.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>15.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>15.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	15.00	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
TRIP2 (SGS)	22/05/2012	<lor< td=""><td>0.0018</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.004</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>20.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0018	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.004</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>20.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.004</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>20.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.010	<lor< td=""><td><lor< td=""><td><lor< td=""><td>20.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>20.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>20.00</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	20.00	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
11(11 2 (000)	30/06/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>10.40</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	10.40	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	<lor< td=""><td>0.0001</td><td><lor< td=""><td>0.001</td><td>0.057</td><td>0.001</td><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4.10</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	<lor< td=""><td>0.001</td><td>0.057</td><td>0.001</td><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4.10</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.057	0.001	0.016	<lor< td=""><td><lor< td=""><td><lor< td=""><td>4.10</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>4.10</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>4.10</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	4.10	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	6/12/2007	<lor< td=""><td>0.0001</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.027	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	14/06/2007	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.005</td><td>0.008</td><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.005</td><td>0.008</td><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.005	0.008	0.003	0.036	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	29/11/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.018	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td><lor< td=""><td>0.078</td><td><lor< td=""><td><lor< td=""><td>0.051</td><td>50.6</td><td>196</td><td>10</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td><lor< td=""><td>0.078</td><td><lor< td=""><td><lor< td=""><td>0.051</td><td>50.6</td><td>196</td><td>10</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.002</td><td><lor< td=""><td>0.078</td><td><lor< td=""><td><lor< td=""><td>0.051</td><td>50.6</td><td>196</td><td>10</td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.002	<lor< td=""><td>0.078</td><td><lor< td=""><td><lor< td=""><td>0.051</td><td>50.6</td><td>196</td><td>10</td></lor<></td></lor<></td></lor<>	0.078	<lor< td=""><td><lor< td=""><td>0.051</td><td>50.6</td><td>196</td><td>10</td></lor<></td></lor<>	<lor< td=""><td>0.051</td><td>50.6</td><td>196</td><td>10</td></lor<>	0.051	50.6	196	10
	8/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.038</td><td><lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.038</td><td><lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.038</td><td><lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.038</td><td><lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.038</td><td><lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.038</td><td><lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.038	<lor< td=""><td><lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.057</td><td>22.8</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.057	22.8	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	18/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.024	<lor< td=""><td><lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.024</td><td>14.6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.024	14.6	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/11/2012	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>25.7</td><td>11</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>25.7</td><td>11</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.001</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>25.7</td><td>11</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.029	<lor< td=""><td><lor< td=""><td><lor< td=""><td>25.7</td><td>11</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>25.7</td><td>11</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>25.7</td><td>11</td><td><lor< td=""></lor<></td></lor<>	25.7	11	<lor< td=""></lor<>
MW 6	21/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.018	<lor< td=""><td><lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>26.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	26.4	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/07/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.001</td><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.001</td><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.001</td><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.001	0.001	0.038	<lor< td=""><td><lor< td=""><td><lor< td=""><td>14.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>14.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>14.4</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	14.4	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.002</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.037	<lor< td=""><td><lor< td=""><td><lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>5.87</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	5.87	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	6/12/2007	0.001	0.0003	<lor< td=""><td>0.002</td><td>0.001</td><td>0.002</td><td>0.050</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.001	0.002	0.050	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	0.005	<lor< td=""><td>0.002</td><td>0.008</td><td>0.004</td><td>0.002</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.008	0.004	0.002	0.034	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	29/11/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td>0.002</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td>0.002</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td><lor< td=""><td>0.002</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	<lor< td=""><td>0.002</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.031	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP1/MW6	29/11/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td>0.002</td><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td>0.002</td><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td><lor< td=""><td>0.002</td><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	<lor< td=""><td>0.002</td><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.030	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DOI I/WWV	5/07/2015	0.005	<lor< td=""><td>0.002</td><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.127</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.002	<lor< td=""><td>0.003</td><td>0.127</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.127	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.008	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2014	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.003</td><td><lor< td=""><td>0.003</td><td>0.127</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.003</td><td><lor< td=""><td>0.003</td><td>0.127</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.003	<lor< td=""><td>0.003</td><td>0.127</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.127	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	0.002	<lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.157</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.157</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.157</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.157	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	0.003	<lor< td=""><td>0.002</td><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.002	<lor< td=""><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.038	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 7	22/05/2012	0.002	<lor< td=""><td>0.002</td><td>0.003</td><td>0.001</td><td>0.003</td><td>0.105</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.001	0.003	0.105	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/07/2011	0.006	<lor< td=""><td><lor< td=""><td>0.006</td><td>0.001</td><td>0.002</td><td>0.195</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td>0.001</td><td>0.002</td><td>0.195</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	0.001	0.002	0.195	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	22/08/2008	0.004	<lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.115</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.002	<lor< td=""><td>0.002</td><td>0.115</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.115	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.045</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.045	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	7/12/2007	0.011	0.0003	<lor< td=""><td>0.001</td><td><lor< td=""><td>0.015</td><td>0.040</td><td>0.0002</td><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td>0.015</td><td>0.040</td><td>0.0002</td><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.015	0.040	0.0002	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	0.012	<lor< td=""><td>0.004</td><td>0.005</td><td>0.006</td><td>0.021</td><td>0.041</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.005	0.006	0.021	0.041	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006	0.014	<lor< td=""><td>0.004</td><td>0.001</td><td>0.002</td><td>0.018</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.001	0.002	0.018	0.042	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.021	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.021	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.015	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.018	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 9	22/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.030</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.030	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	30/06/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.018	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.118</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.118	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	7/12/2007	<lor< td=""><td>0.0002</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP2/MW9	7/12/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.010	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DOI Z/WWW	13/06/2007	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.001</td><td>0.001</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.001</td><td>0.001</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.001	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006	<lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td>0.017</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td>0.017</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor <lor< td=""><td>0.017</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></lor 	<lor< td=""><td><lor< td=""><td><lor <lor< td=""><td>0.017</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td><lor <lor< td=""><td>0.017</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td>0.017</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.017	<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	<lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<>	Not analysed	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
Lovel of Decart		0.001	0.0001	0.001	0.001	0.001	0.001	0.005	0.0001	0.5/2.0		,	10	
Level of Reportir Freshwater Gui			0.0001	0.001	0.001	0.001	0.001	0.005	0.0001		0.02/2.0	0.01 1.0	280	10 ID
Freshwater Gui	ueiines	0.013	0.0002	0.001	0.0014	0.0034	0.011	800.0	0.00006	Varies	0.01	1.0	280	עו

Guidelines: NEPM (2013): Groundwater Investigation Levels (GILs) - Fresh waters. ANZECC 2000 freshwater guidelines prior to 2013.

Metolachlor value recommended by EHP for Binary Industries site.

ID - indicates insufficient data for determination of a reliable GILs Value

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Groundwater Analytical Results Metals, Pesticides and Herbicides

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (December 2006 to July 2015)

Page 3 of 5

					_						0.0			Page 3 of 5
Monitoring Well ID/	Sampling	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	OC	OP	Herbicide -		acetic Acid
Sample No.	Date									Pesticides	Pesticides -	Metolachlor	Herb	icides
											Dimethoate		0.4.0	MCDA
	-	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	2,4-D μg/L	MCPA µg/L
	5/07/00/5		-	-	-	_	-	-	-					
	5/07/2015	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.012	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.013	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.007	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 10	22/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	30/06/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.033</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.033	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP1/MW10	30/06/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.009</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.009	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP2/MW10	20/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	7/12/2007	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td><u>0.019</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td><u>0.019</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td><u>0.019</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>0.019</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<u>0.019</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	0.001	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.012</td><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.012</td><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.012	<lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP1/MW10	13/06/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.013</td><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.013</td><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.013</td><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.013	<lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.026	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/07/2015	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.039	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2014	<lor< td=""><td><lor< td=""><td>0.004</td><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.040	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	<lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.032	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	<lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.023	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 11	22/05/2012	<lor< td=""><td><lor< td=""><td>0.010</td><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.010</td><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.010	0.002	<lor< td=""><td>0.003</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.033	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/07/2011	0.002	<lor< td=""><td>0.010</td><td>0.001</td><td><lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td><l r<="" td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></l></td></lor<></td></lor<></td></lor<></td></lor<>	0.010	0.001	<lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td><l r<="" td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></l></td></lor<></td></lor<></td></lor<>	0.003	<lor< td=""><td><lor< td=""><td><l r<="" td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></l></td></lor<></td></lor<>	<lor< td=""><td><l r<="" td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></l></td></lor<>	<l r<="" td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></l>	<lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.010	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	0.012	<lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.021	<lor< td=""><td><lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.016	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/12/2007	0.015	0.0002	0.011	<lor< td=""><td><lor< td=""><td>0.007</td><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.60</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td>0.024</td><td><lor< td=""><td><lor< td=""><td>0.60</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.007	0.024	<lor< td=""><td><lor< td=""><td>0.60</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.60</td><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.60	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	0.006	<lor< td=""><td>0.020</td><td>0.001</td><td>0.022</td><td>0.008</td><td>1.54</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.020	0.001	0.022	0.008	1.54	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<>	Not analysed	18	<lor< td=""></lor<>
	1/12/2006	0.093	<lor< td=""><td>0.045</td><td><lor< td=""><td><lor< td=""><td>0.008</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td><10</td><td>Not analysed</td><td>68600</td><td>195</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.045	<lor< td=""><td><lor< td=""><td>0.008</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td><10</td><td>Not analysed</td><td>68600</td><td>195</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td><10</td><td>Not analysed</td><td>68600</td><td>195</td></lor<></td></lor<></td></lor<>	0.008	0.033	<lor< td=""><td><lor< td=""><td><10</td><td>Not analysed</td><td>68600</td><td>195</td></lor<></td></lor<>	<lor< td=""><td><10</td><td>Not analysed</td><td>68600</td><td>195</td></lor<>	<10	Not analysed	68600	195
	1/07/2015				W	ell appears to	have been o	destroyed by	construction	of fire acces	s road.			
	to													
	1/07/2011				W	ell appears to	have been o	destroyed by	construction	of fire acces	s road.			
MW 12	20/08/2008	<lor< td=""><td>0.0004</td><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0004	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.011	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/12/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.022	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.002</td><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.002	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006	0.003	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.021</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.021	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	9/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.027	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.010	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.032	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 13	22/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.018	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/07/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.004</td><td><lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.004</td><td><lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td><lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	<lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.034	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.008	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	0.001	<lor< td=""><td><lor <lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor 	0.002	<lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<>	0.008	<lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<>	<lor <lor< td=""></lor<></lor
	5/12/2007	<lor< td=""><td>0.0003</td><td><lor <lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.061</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<>	0.0003	<lor <lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.061</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	0.002	<lor< td=""><td>0.001</td><td>0.061</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<></lor </td></lor<>	0.001	0.061	<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<></td></lor<></lor 	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<>	<lor <lor< td=""></lor<></lor
	13/06/2007	<lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td>0.002</td><td>0.012</td><td>0.001</td><td>0.031</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	<lor< td=""><td><lor <lor< td=""><td>0.002</td><td>0.012</td><td>0.001</td><td>0.031</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td>0.002</td><td>0.012</td><td>0.001</td><td>0.031</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.002	0.012	0.001	0.031	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	Not analysed	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
	1/12/2006	0.001	<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.022</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.022</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></lor 	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.022</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.022</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td>0.022</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	0.022	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>Not analysed Not analysed</td><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	Not analysed Not analysed	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
	1/07/2015	0.001	<lun< td=""><td><lun< td=""><td><lun< td=""><td></td><td>nt sample for</td><td></td><td></td><td></td><td></td><td>140t allalysed</td><td><lun< td=""><td><lun< td=""></lun<></td></lun<></td></lun<></td></lun<></td></lun<>	<lun< td=""><td><lun< td=""><td></td><td>nt sample for</td><td></td><td></td><td></td><td></td><td>140t allalysed</td><td><lun< td=""><td><lun< td=""></lun<></td></lun<></td></lun<></td></lun<>	<lun< td=""><td></td><td>nt sample for</td><td></td><td></td><td></td><td></td><td>140t allalysed</td><td><lun< td=""><td><lun< td=""></lun<></td></lun<></td></lun<>		nt sample for					140t allalysed	<lun< td=""><td><lun< td=""></lun<></td></lun<>	<lun< td=""></lun<>
MW 14						Insumcie	ni sample for	analysis - W	reli dry and fi	ui ot sealmer	IL			
IVIVV 14	to					I			/-II do	.II - 6 II.				
	13/06/2007				1.00		nt sample for						1.00	. 05
	1/12/2006	0.044	<lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.010	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Level of Reportir											0.02/2.0	0.01	10	10
Freshwater Gui	idelines												ID	

Guidelines: NEPM (2013): Groundwater Investigation Levels (GILs) - Fresh waters. ANZECC 2000 freshwater guidelines prior to 2013.

Metolachlor value recommended by EHP for Binary Industries site.

ID - indicates insufficient data for determination of a reliable GILs Value

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Groundwater Analytical Results

Metals, Pesticides and Herbicides

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (December 2006 to July 2015)

Page 4 of 5

Monitoring Well ID/ Sample No.	Sampling Date	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	OC Pesticides	OP Pesticides -	Herbicide - Metolachlor	Phenoxya	rage 4 of 5 cetic Acid cides
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	Chlorpyrifos µg/L	μg/L	2,4-D μg/L	MCPA µg/L
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	μg/L	μg/L	µg/L	μg/L
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.002	0.042	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	8/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.002</td><td>0.040</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.040	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	18/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.025</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.025</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.025</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.025</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.025</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.025	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td>0.003</td><td>0.059</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td>0.003</td><td>0.059</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td>0.003</td><td>0.059</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td>0.003</td><td>0.059</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.059	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 15	21/05/2012	<lor< td=""><td>0.0003</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td><u>0.016</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0003	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td><u>0.016</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.002</td><td><u>0.016</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<u>0.016</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/07/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.002</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.002</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td>0.002</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td>0.002</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.039	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.006	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.001</td><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td>0.001</td><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td>0.001</td><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td>0.001</td><td>0.015</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.007	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/12/2007	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.003</td><td><lor< td=""><td>0.001</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.003</td><td><lor< td=""><td>0.001</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<lor< td=""><td>0.001</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	13/06/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.003</td><td>0.002</td><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.003</td><td>0.002</td><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.003</td><td>0.002</td><td>0.011</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.003	0.002	0.011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	29/11/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.036	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	0.003	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.090	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	8/05/2014	0.005	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.004</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.004</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.046	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	18/05/2013	0.003	<lor< td=""><td><u>0.001</u></td><td>0.001</td><td><lor< td=""><td>0.005</td><td>0.064</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<u>0.001</u>	0.001	<lor< td=""><td>0.005</td><td>0.064</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.064	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/11/2012	0.002	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.006</td><td>0.226</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.006</td><td>0.226</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.006</td><td>0.226</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	0.226	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 16	21/05/2012	0.002	<lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.004</td><td><u>0.115</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.004	<lor< td=""><td>0.004</td><td><u>0.115</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	<u>0.115</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/07/2011	<lor< td=""><td>0.0001</td><td><lor< td=""><td>0.005</td><td>0.001</td><td>0.005</td><td>0.671</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	<lor< td=""><td>0.005</td><td>0.001</td><td>0.005</td><td>0.671</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.001	0.005	0.671	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	22/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.175</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.175</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.003</td><td>0.175</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.003</td><td>0.175</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.175	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.008	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	7/12/2007	0.001	0.0003	<lor< td=""><td>0.004</td><td>0.002</td><td>0.004</td><td>0.218</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.002	0.004	0.218	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	14/06/2007	0.004	0.0001	0.002	0.026	0.034	0.015	<u>3.510</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/12/2006							cient sample						
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.014</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.014	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	8/05/2014	0.002	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.002</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.042	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	18/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.001</td><td>0.001</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.001</td><td>0.001</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.001</td><td>0.001</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.001	0.001	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	1/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 17	21/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.004</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.004</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	<lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/07/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.001</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.022	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.007	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	20/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.026	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.011</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.011	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	6/12/2007	0.002	0.0006	<lor< td=""><td><u>0.011</u></td><td>0.001</td><td>0.004</td><td>0.039</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<u>0.011</u>	0.001	0.004	0.039	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	14/06/2007	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.009</td><td>0.010</td><td>0.008</td><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.009</td><td>0.010</td><td>0.008</td><td>0.013</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.009	0.010	0.008	0.013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	29/11/2006	<lor< td=""><td>0.0001</td><td><lor< td=""><td>0.002</td><td>0.002</td><td>0.004</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	<lor< td=""><td>0.002</td><td>0.002</td><td>0.004</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.002	0.004	0.031	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/07/2015	0.001	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.034</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.034	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>11.4</u></td><td>194</td><td><lor< td=""></lor<></td></lor<>	<u>11.4</u>	194	<lor< td=""></lor<>
RPD (DUP1/MW19)		0.0	0.0	0.0	0.0	0.0	0.0	-36.1	0.0	0.0	0.0	-13.9	4.7	0.0
DUP1 (ALS)	5/07/2015	0.001	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.049	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>13.1</u></td><td>185</td><td><lor< td=""></lor<></td></lor<>	<u>13.1</u>	185	<lor< td=""></lor<>
RPD (TRIP1/MW19)		0.0	0.0	0.0	0.0	0.0	0.0	-11.1	0.0	0.0	0.0	-20.5	2.1	0.0
TRIP1 (SGS)	5/07/2015	0.001	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.038	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<></td></lor<>	<lor< td=""><td><u>14.0</u></td><td>190</td><td>0.9</td></lor<>	<u>14.0</u>	190	0.9
	8/05/2014	0.001	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td>0.002</td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>18.4</u></td><td>322</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.002</td><td>0.002</td><td>0.032</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>18.4</u></td><td>322</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.002	0.002	0.032	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>18.4</u></td><td>322</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>18.4</u></td><td>322</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>18.4</u></td><td>322</td><td><lor< td=""></lor<></td></lor<>	<u>18.4</u>	322	<lor< td=""></lor<>
DUP1 (ALS)	8/05/2014	0.001	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>17.0</u></td><td><u>326</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>17.0</u></td><td><u>326</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.002</td><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>17.0</u></td><td><u>326</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.002	0.027	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>17.0</u></td><td><u>326</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>17.0</u></td><td><u>326</u></td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>17.0</u></td><td><u>326</u></td><td><lor< td=""></lor<></td></lor<>	<u>17.0</u>	<u>326</u>	<lor< td=""></lor<>
TRIP1 (SGS)	8/05/2014	0.001	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.002</td><td>0.001</td><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>24</u></td><td><u>280</u></td><td>1.9</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.002</td><td>0.001</td><td>0.027</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>24</u></td><td><u>280</u></td><td>1.9</td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.002	0.001	0.027	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>24</u></td><td><u>280</u></td><td>1.9</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>24</u></td><td><u>280</u></td><td>1.9</td></lor<></td></lor<>	<lor< td=""><td><u>24</u></td><td><u>280</u></td><td>1.9</td></lor<>	<u>24</u>	<u>280</u>	1.9
	19/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td>0.002</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td>0.002</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.005</td><td>0.002</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td>0.002</td><td>0.023</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.002	0.023	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>14.5</u></td><td><u>302</u></td><td><lor< td=""></lor<></td></lor<>	<u>14.5</u>	<u>302</u>	<lor< td=""></lor<>
MW 19	2/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.003</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>7.46</u></td><td>172</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.003</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>7.46</u></td><td>172</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.003</td><td>0.003</td><td>0.037</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>7.46</u></td><td>172</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.003	0.037	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>7.46</u></td><td>172</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>7.46</u></td><td>172</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>7.46</u></td><td>172</td><td><lor< td=""></lor<></td></lor<>	<u>7.46</u>	172	<lor< td=""></lor<>
DUP2 (ALS)	2/11/2012	0.001	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.43</u></td><td>174</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.003</td><td>0.003</td><td>0.036</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.43</u></td><td>174</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.003	0.036	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>8.43</u></td><td>174</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>8.43</u></td><td>174</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>8.43</u></td><td>174</td><td><lor< td=""></lor<></td></lor<>	<u>8.43</u>	174	<lor< td=""></lor<>
	22/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.002	0.014	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>11.0</u></td><td>190</td><td><lor< td=""></lor<></td></lor<>	<u>11.0</u>	190	<lor< td=""></lor<>
DUP1 (ALS)	22/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.002</td><td>0.014</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.002	0.014	<lor< td=""><td><lor< td=""><td><lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><u>11.3</u></td><td>181</td><td><lor< td=""></lor<></td></lor<>	<u>11.3</u>	181	<lor< td=""></lor<>
TRIP1 (SGS)	22/05/2012	<lor< td=""><td>0.0018</td><td>0.002</td><td>0.001</td><td>0.003</td><td>0.005</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.041</td><td>250</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0018	0.002	0.001	0.003	0.005	0.022	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.041</td><td>250</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.041</td><td>250</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.041</td><td>250</td><td><lor< td=""></lor<></td></lor<>	0.041	250	<lor< td=""></lor<>
	30/06/2011	0.001	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4.44</td><td>73</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4.44</td><td>73</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.002</td><td>0.026</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4.44</td><td>73</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.026	<lor< td=""><td><lor< td=""><td><lor< td=""><td>4.44</td><td>73</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>4.44</td><td>73</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>4.44</td><td>73</td><td><lor< td=""></lor<></td></lor<>	4.44	73	<lor< td=""></lor<>
	22/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.003</td><td>0.018</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.018	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.375</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.375	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	7/12/2007	<lor< td=""><td>0.0002</td><td><lor< td=""><td>0.003</td><td><u>0.010</u></td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0002	<lor< td=""><td>0.003</td><td><u>0.010</u></td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<u>0.010</u>	0.003	0.046	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<>	Not analysed	18	<lor< td=""></lor<>
DUP1/MW19	7/12/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.009</td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.009</td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.009</td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.009	0.003	0.046	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>18</td><td><lor< td=""></lor<></td></lor<>	Not analysed	18	<lor< td=""></lor<>
	13/06/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.009</td><td>0.003</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>15</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.009</td><td>0.003</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>15</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.009</td><td>0.003</td><td>0.022</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>15</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.009	0.003	0.022	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>15</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>15</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>15</td><td><lor< td=""></lor<></td></lor<>	Not analysed	15	<lor< td=""></lor<>
DUP2/MW19	13/06/2007	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.009</td><td>0.003</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>12</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.009</td><td>0.003</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>12</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.009</td><td>0.003</td><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>12</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.009	0.003	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td>12</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td>12</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td>12</td><td><lor< td=""></lor<></td></lor<>	Not analysed	12	<lor< td=""></lor<>
	1/12/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.006</td><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.006</td><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.003</td><td>0.006</td><td>0.047</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.006	0.047	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP2/MW19	1/12/2006	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.005</td><td>0.055</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.003</td><td>0.005</td><td>0.055</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.003</td><td>0.005</td><td>0.055</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.003	0.005	0.055	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Level of Reportin	ng (LOR)	0.001	0.0001	0.001	0.001	0.001	0.001	0.005	0.0001	0.5/2.0	0.02/2.0	0.01	10	10
Freshwater Gui		0.013	0.0002	0.001	0.0014	0.0034	0.011	0.008	0.00006	Varies	0.01	1.0	280	ID

Guidelines: NEPM (2013): Groundwater Investigation Levels (GILs) - Fresh waters. ANZECC 2000 freshwater guidelines prior to 2013.

Metolachlor value recommended by EHP for Binary Industries site.

ID - indicates insufficient data for determination of a reliable GILs Value Exceedences: Bolded and underlined results exceed nominated assessment criteria

Groundwater Analytical Results Metals, Pesticides and Herbicides

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (December 2006 to July 2015)

Page 5 of 5

														Page 5 o
Monitoring Well ID/ Sample No.	Sampling Date	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	OC Pesticides	OP Pesticides - Chlorpyrifos	Herbicide - Metolachlor	Phenoxya Herbi	icetic Acid
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	2,4-D μg/L	MCP/ μg/L
	5/07/2015	0.002	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.012</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.133</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.133	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	9/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.020</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.020	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	19/05/2013	0.008	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.122</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.122	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	2/11/2012	0.009	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.16</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.16	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
MW 20	22/05/2012	0.011	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.10</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.10</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.001</td><td>0.031</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.10</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.031	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.10</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.10</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.10</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.10	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	30/06/2011	0.012	<lor< td=""><td><lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.081</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.081	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	21/08/2008	0.004	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.202</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.202	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	7/12/2007	0.029	0.0001	0.002	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.016	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	13/06/2007	0.020	0.0001	0.004	0.001	0.001	0.002	0.010	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	29/11/2006	0.060	0.0001	<u>0.014</u>	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.038</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.038	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	5/07/2015	0.002	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.005</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.005</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.029	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
ŀ	9/05/2014	0.001	<lor< td=""><td>0.002</td><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.029	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.015</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.015	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	19/05/2013	<lor< td=""><td><lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td><lor< td=""><td><lor< td=""><td>0.003</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	<lor< td=""><td><lor< td=""><td>0.003</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.003</td><td>0.010</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.010	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MW 21	2/11/2012 22/05/2012	<lor< td=""><td><lor <lor< td=""><td>0.003</td><td><lor <lor< td=""><td><lor <lor< td=""><td>0.003</td><td>0.018</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td>0.003</td><td><lor <lor< td=""><td><lor <lor< td=""><td>0.003</td><td>0.018</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.003	<lor <lor< td=""><td><lor <lor< td=""><td>0.003</td><td>0.018</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.003</td><td>0.018</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.003	0.018	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
		0.002	<lor <lor< td=""><td>0.004 0.003</td><td><lor <lor< td=""><td></td><td></td><td>0.039 0.019</td><td></td><td><lor <lor< td=""><td></td><td></td><td></td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.004 0.003	<lor <lor< td=""><td></td><td></td><td>0.039 0.019</td><td></td><td><lor <lor< td=""><td></td><td></td><td></td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor 			0.039 0.019		<lor <lor< td=""><td></td><td></td><td></td><td><lor< td=""></lor<></td></lor<></lor 				<lor< td=""></lor<>
DUP2/MW21	1/07/2011	0.003	<lor <lor< td=""><td>0.003</td><td><lor <lor< td=""><td><lor <lor< td=""><td>0.006 <u>0.019</u></td><td>0.019</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.021 0.018</td><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.003	<lor <lor< td=""><td><lor <lor< td=""><td>0.006 <u>0.019</u></td><td>0.019</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.021 0.018</td><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.006 <u>0.019</u></td><td>0.019</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.021 0.018</td><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.006 <u>0.019</u>	0.019	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.021 0.018</td><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>0.021 0.018</td><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.021 0.018</td><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor 	0.021 0.018	<lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor 	<lor< td=""></lor<>
DUP2/IVIVV21	20/08/2008	0.006	<lor< td=""><td>0.007</td><td><lor< td=""><td>0.003</td><td>0.019</td><td>0.090</td><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<>	0.007	<lor< td=""><td>0.003</td><td>0.019</td><td>0.090</td><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<>	0.003	0.019	0.090	<lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor <lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.018</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></lor 	0.018	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP1/MW21	20/08/2008	0.007	0.0002	0.007	<lor< td=""><td>0.003</td><td>0.020</td><td>0.094</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.003	0.020	0.094	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.016	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DOI I/MIVVZ1	23/04/2008	0.002	0.0003	0.008	0.002	0.008	0.030	0.236	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td>0.021</td><td>0.002</td><td>0.076</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.007</td><td>0.021</td><td>0.002</td><td>0.076</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td>0.021</td><td>0.002</td><td>0.076</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.007	0.021	0.002	0.076	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	8/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td>0.003</td><td>0.002</td><td>0.060</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td>0.003</td><td>0.002</td><td>0.060</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td>0.003</td><td>0.002</td><td>0.060</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.008	0.003	0.002	0.060	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	18/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td><lor< td=""><td>0.001</td><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	<lor< td=""><td>0.001</td><td>0.035</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.035	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
MW 22	1/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.004</td><td>0.016</td><td>0.002</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.004</td><td>0.016</td><td>0.002</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td>0.016</td><td>0.002</td><td>0.049</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.004	0.016	0.002	0.049	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td>0.024</td><td>0.002</td><td>0.055</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.009</td><td>0.024</td><td>0.002</td><td>0.055</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.009</td><td>0.024</td><td>0.002</td><td>0.055</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.009	0.024	0.002	0.055	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	2/07/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.019</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.019</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.019</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.004	<lor< td=""><td>0.019</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.019	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	21/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.051</td><td><lor< td=""><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.051</td><td><lor< td=""><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.051</td><td><lor< td=""><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.051	<lor< td=""><td><u>0.018</u></td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<u>0.018</u>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.008	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	23/04/2008	<lor< td=""><td>0.0003</td><td><lor< td=""><td>0.002</td><td>0.044</td><td><lor< td=""><td>0.070</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0003	<lor< td=""><td>0.002</td><td>0.044</td><td><lor< td=""><td>0.070</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.044	<lor< td=""><td>0.070</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.070	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.012</td><td>0.003</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.49</td><td>1260</td><td>12</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.012</td><td>0.003</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.49</td><td>1260</td><td>12</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.012</td><td>0.003</td><td>0.042</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6.49</td><td>1260</td><td>12</td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.012	0.003	0.042	<lor< td=""><td><lor< td=""><td><lor< td=""><td>6.49</td><td>1260</td><td>12</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>6.49</td><td>1260</td><td>12</td></lor<></td></lor<>	<lor< td=""><td>6.49</td><td>1260</td><td>12</td></lor<>	6.49	1260	12
RPD (DUP2/MW23)		0.0	0.0	0.0	-40.0	-8.0 0.013	0.0	-2.4	0.0	0.0	0.0	-73.3	4.9	0.0
DUP2 (SGS)	4/07/2015 8/05/2014	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.003</td><td>0.013</td><td>0.003</td><td>0.043 0.043</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>14.0</td><td>1200 1950</td><td>12 24</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>0.003</td><td>0.013</td><td>0.003</td><td>0.043 0.043</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>14.0</td><td>1200 1950</td><td>12 24</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.003</td><td>0.013</td><td>0.003</td><td>0.043 0.043</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>14.0</td><td>1200 1950</td><td>12 24</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.003	0.013	0.003	0.043 0.043	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>14.0</td><td>1200 1950</td><td>12 24</td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>14.0</td><td>1200 1950</td><td>12 24</td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>14.0</td><td>1200 1950</td><td>12 24</td></lor<></lor 	14.0	1200 1950	12 24
DUP2 (SGS)	8/05/2014	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.002 0.002</td><td>0.006</td><td><lor< td=""><td>0.030</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>0.002 0.002</td><td>0.006</td><td><lor< td=""><td>0.030</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.002 0.002</td><td>0.006</td><td><lor< td=""><td>0.030</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	0.002 0.002	0.006	<lor< td=""><td>0.030</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	0.030	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><u>8.95</u> 18</td><td>1600</td><td>18</td></lor<></lor 	<u>8.95</u> 18	1600	18
MW 23	18/05/2013	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>0.002</td><td>0.002</td><td><lor <lor< td=""><td>0.036</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>0.002</td><td>0.002</td><td><lor <lor< td=""><td>0.036</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>0.002</td><td>0.002</td><td><lor <lor< td=""><td>0.036</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.002	0.002	<lor <lor< td=""><td>0.036</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.036	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>2.18</td><td>54</td><td><lor< td=""></lor<></td></lor<></lor 	2.18	54	<lor< td=""></lor<>
DUP2 (ALS)	18/05/2013	<lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td>0.004</td><td>0.002</td><td><lor <lor< td=""><td>0.026</td><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	<lor< td=""><td><lor <lor< td=""><td>0.004</td><td>0.002</td><td><lor <lor< td=""><td>0.026</td><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td>0.004</td><td>0.002</td><td><lor <lor< td=""><td>0.026</td><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor 	0.004	0.002	<lor <lor< td=""><td>0.026</td><td><lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	0.026	<lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>2.43</td><td>53</td><td><lor< td=""></lor<></td></lor<></lor 	2.43	53	<lor< td=""></lor<>
D01 2 (ALO)	1/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td>0.003</td><td>0.002</td><td>0.048</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.43</td><td>222</td><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td>0.003</td><td>0.002</td><td>0.048</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.43</td><td>222</td><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td>0.003</td><td>0.002</td><td>0.048</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.43</td><td>222</td><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	0.003	0.002	0.048	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3.43</td><td>222</td><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3.43</td><td>222</td><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td>3.43</td><td>222</td><td><lof< td=""></lof<></td></lor<>	3.43	222	<lof< td=""></lof<>
	21/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.010</td><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.010</td><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.010</td><td><lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.010	<lor< td=""><td>0.016</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.016	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.01	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	2/07/2011	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.001</td><td>0.004</td><td><lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.001	0.004	<lor< td=""><td>0.024</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.024	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.145</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.145	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	21/08/2008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td>0.019</td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.029</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td>0.019</td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.029</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td>0.019</td><td>0.003</td><td>0.046</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.029</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	0.019	0.003	0.046	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.029</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.029</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.029</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.029	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	23/04/2008	<lor< td=""><td>0.0004</td><td><lor< td=""><td>0.014</td><td>0.098</td><td>0.014</td><td>0.204</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0004	<lor< td=""><td>0.014</td><td>0.098</td><td>0.014</td><td>0.204</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.014	0.098	0.014	0.204	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
DUP1/MW23	23/04/2008	<lor< td=""><td>0.0003</td><td><lor< td=""><td>0.014</td><td>0.099</td><td>0.014</td><td>0.195</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0003	<lor< td=""><td>0.014</td><td>0.099</td><td>0.014</td><td>0.195</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.014	0.099	0.014	0.195	<lor< td=""><td><lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>Not analysed</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	Not analysed	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	4/07/2015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.011</td><td>0.002</td><td>0.252</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.011</td><td>0.002</td><td>0.252</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.011</td><td>0.002</td><td>0.252</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.011	0.002	0.252	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	8/05/2014	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td>0.002</td><td>0.003</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.005</td><td>0.002</td><td>0.003</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td>0.002</td><td>0.003</td><td>0.090</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.005	0.002	0.003	0.090	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	18/05/2013	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td>0.004</td><td>0.003</td><td>0.060</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.007</td><td>0.004</td><td>0.003</td><td>0.060</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.007</td><td>0.004</td><td>0.003</td><td>0.060</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.007	0.004	0.003	0.060	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
MW 24	1/11/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.006</td><td>0.006</td><td>0.003</td><td>0.071</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.006</td><td>0.006</td><td>0.003</td><td>0.071</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td>0.006</td><td>0.003</td><td>0.071</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.006	0.006	0.003	0.071	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	21/05/2012	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.002</td><td>0.006</td><td>0.002</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.006</td><td>0.002</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.006</td><td>0.002</td><td>0.029</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.006	0.002	0.029	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	2/07/2011	<lor< td=""><td>0.0001</td><td>0.001</td><td>0.002</td><td>0.061</td><td>0.009</td><td>0.111</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	0.001	0.002	0.061	0.009	0.111	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.005</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.005</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.005	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	21/08/2008	<lor< td=""><td>0.0001</td><td>0.001</td><td>0.007</td><td>0.020</td><td>0.008</td><td>0.098</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	0.001	0.007	0.020	0.008	0.098	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
	23/04/2008 4/07/2015	<lor <lor< td=""><td><u>0.0004</u> <lor< td=""><td><u>0.002</u> <lor< td=""><td><u>0.020</u> <lor< td=""><td><u>0.044</u> <lor< td=""><td><u>0.014</u> <lor< td=""><td>0.171 0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor 	<u>0.0004</u> <lor< td=""><td><u>0.002</u> <lor< td=""><td><u>0.020</u> <lor< td=""><td><u>0.044</u> <lor< td=""><td><u>0.014</u> <lor< td=""><td>0.171 0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<u>0.002</u> <lor< td=""><td><u>0.020</u> <lor< td=""><td><u>0.044</u> <lor< td=""><td><u>0.014</u> <lor< td=""><td>0.171 0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<></td></lor<>	<u>0.020</u> <lor< td=""><td><u>0.044</u> <lor< td=""><td><u>0.014</u> <lor< td=""><td>0.171 0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></td></lor<>	<u>0.044</u> <lor< td=""><td><u>0.014</u> <lor< td=""><td>0.171 0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<>	<u>0.014</u> <lor< td=""><td>0.171 0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	0.171 0.020	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></td></lor<></lor 	Not analysed <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor 	<lof< td=""></lof<>
	8/05/2014	<lor 0.004</lor 	<lor 0.0001</lor 	<lor <lor< td=""><td>0.004</td><td><lor 0.015</lor </td><td>0.006</td><td>0.020</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.004	<lor 0.015</lor 	0.006	0.020	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor 	<lof< td=""></lof<>
Backg'nd	18/05/2013	0.004	<lor< td=""><td><lor <lor< td=""><td>0.005</td><td>0.013</td><td>0.006</td><td>0.032</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td>0.005</td><td>0.013</td><td>0.006</td><td>0.032</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	0.005	0.013	0.006	0.032	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor 	<lof< td=""></lof<>
Daving IIU	1/11/2012	<lor< td=""><td>0.0001</td><td>0.001</td><td>0.002</td><td>0.013</td><td>0.004</td><td>0.032</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	0.0001	0.001	0.002	0.013	0.004	0.032	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lof< td=""></lof<></td></lor<></lor 	<lof< td=""></lof<>
DUP1 (ALS)	1/11/2012	<lor< td=""><td>0.0001</td><td><lor< td=""><td>0.002</td><td>0.015</td><td>0.004</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	<lor< td=""><td>0.002</td><td>0.015</td><td>0.004</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.015	0.004	0.008	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<>	<lor< td=""><td><loi< td=""></loi<></td></lor<>	<loi< td=""></loi<>
20 (/ 120)	21/05/2012	<lor< td=""><td>0.0001</td><td>0.002</td><td>0.010</td><td>0.008</td><td>0.005</td><td>0.051</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.0001	0.002	0.010	0.008	0.005	0.051	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><loi< td=""></loi<></td></lor<></td></lor<>	<lor< td=""><td><loi< td=""></loi<></td></lor<>	<loi< td=""></loi<>
	1/07/2011	0.001	<lor< td=""><td><lor< td=""><td>0.002</td><td>0.023</td><td>0.005</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.002</td><td>0.023</td><td>0.005</td><td>0.008</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.002	0.023	0.005	0.008	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.009</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.009</td><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	0.009	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
RIN 1(Backg'nd)	4/07/2015	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lof< td=""></lof<></td></lor<></td></lor<>	<lor< td=""><td><lof< td=""></lof<></td></lor<>	<lof< td=""></lof<>
Level of Reportin		0.001	0.0001	0.001	0.001	0.001	0.001	0.005	0.0001	0.5/2.0	0.5/2.0	0.01	10	10

Guidelines: NEPM (2013): Groundwater Investigation Levels (GILs) - Fresh waters. ANZECC 2000 freshwater guidelines prior to 2013.

Metolachlor value recommended by EHP for Binary Industries site.

ID - indicates insufficient data for determination of a reliable GILs Value

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (June 2007 to July 2015)

Page 1 of 6

Phenolic Compound	Level of Reporting		Mo	nitoring Well ID	/ Sample No. M	W 2		Monito	ring Well ID/ Sa	mple No. MW 3		Freshwater Guidelines
Sample Date		21-Aug-08	2-Jul-11	21-May-12	2-Nov-12	19-May-13	9-May-14	21-Aug-08	2-Jul-11	21-May-12	1-Nov-12	
2.4.5-Trichlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.4.6-Trichlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<>	<lor< td=""><td>3</td></lor<>	3
2.4-Dichlorophenol	1 μg/L	9.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<>	<lor< td=""><td>120</td></lor<>	120
2.4-Dimethylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.6-Dichlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2-Chlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<>	<lor< td=""><td>340</td></lor<>	340
2-Methylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
2-Nitrophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
3- & 4-Methylphenol	2 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
4-Chloro-3-Methylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
Pentachlorophenol	2 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<>	<lor< td=""><td>3.6</td></lor<>	3.6
Phenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<>	<lor< td=""><td>320</td></lor<>	320

Guidelines: NEPM 2013: Groundwater Investigation Levels, Fresh Waters, slightly to moderately disturbed systems and per ANZECC 2000 Guidelines prior to 2013.

ID - indicates insufficient data for determination of a reliable GILs value

NE - Indicates GILs value not established

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Columns highlighted indicate results for current round of monitoring (July 2015)

Groundwater Analytical Results

Phenolic Compounds

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (June 2007 to July 2015)

Page 2 of 6

	Level of															Freshwater
Phenolic Compound	Reporting				Mo	onitoring Well ID	/ Sample No. N					Mo	nitoring Well ID)/ Sample No. M	W 5	Guidelines
Sample Date		1-Jun-07	1-Dec-07	21-Aug-08	2-Jul-11	21-May-12	1-Nov-12	DUP1 - 18-May-13(ALS)	18-May-13	9-May-14	4-Jul-15	30-Jun-11	19-May-13	9-May-14	5-Jul-15	
2.4.5-Trichlorophenol	1 μg/L	19.9	31	<1.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<9.5	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.4.6-Trichlorophenol	1 μg/L	<u>38.9</u>	<u>32.9</u>	<u>9.8</u>	<lor< td=""><td>1.7</td><td><u>5.0</u></td><td>9.9</td><td><u>9.1</u></td><td><u>56.5</u></td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	1.7	<u>5.0</u>	9.9	<u>9.1</u>	<u>56.5</u>	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<>	<lor< td=""><td>3</td></lor<>	3
2.4-Dichlorophenol	1 μg/L	<u>3080</u>	<u>653</u>	<u>230</u>	38	23.9	202	<u>2310</u>	2300	<u>17,500</u>	2,860	17.6	14.1	<lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<>	<lor< td=""><td>120</td></lor<>	120
2.4-Dimethylphenol	1 μg/L	6.2	<4.9	<1.9	1.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<9.5	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.6-Dichlorophenol	1 μg/L	24.9	6.9	2.1	<lor< td=""><td><lor< td=""><td>3.7</td><td>8.8</td><td>7.4</td><td>41.6</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>3.7</td><td>8.8</td><td>7.4</td><td>41.6</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	3.7	8.8	7.4	41.6	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2-Chlorophenol	1 μg/L	16.6	7.8	3.6	6.4	8.8	6.5	14.6	13.4	121	51.8	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<>	<lor< td=""><td>340</td></lor<>	340
2-Methylphenol	1 μg/L	8.3	<4.9	<1.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<9.5	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
2-Nitrophenol	1 μg/L	<2.0	<4.9	<1.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<9.5	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
3- & 4-Methylphenol	2 μg/L	<3.9	<9.7	<3.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><19.0</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><19.0</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><19.0</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><19.0</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><19.0</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<19.0	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
4-Chloro-3-Methylphenol	1 μg/L	<2.0	<4.9	<1.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>149</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>149</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>149</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>149</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>149</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	149	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
Pentachlorophenol	2 μg/L	<3.9	<9.7	<3.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><19.0</td><td><96.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><19.0</td><td><96.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><19.0</td><td><96.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><19.0</td><td><96.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><19.0</td><td><96.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<19.0	<96.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<>	<lor< td=""><td>3.6</td></lor<>	3.6
Phenol	1 μg/L	4	7.5	<1.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><9.5</td><td><48.1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<9.5	<48.1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<>	<lor< td=""><td>320</td></lor<>	320

Guidelines: NEPM 2013: Groundwater Investigation Levels, Fresh Waters, slighlty to moderately disturbed systems and per ANZECC 2000 Guidelines prior to 2013.

ID - indicates insufficient data for determination of a reliable GILs value

NE - Indicates GILs value not established

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Columns highlighted indicate results for current round of monitoring (July 2015)

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (June 2007 to July 2015)

Page 3 of 6

Phenolic Compound	Level of Reporting	Monitoring Well ID/ Sample No. MW 6			Monitoring Well ID/ Sample No. MW11										
Sample Date		23-Apr-13	9-May-14	4-Jul-15	1-Jun-07	1-Dec-07	20-Aug-08	1-Jul-11	22-May-12	2-Nov-12	19-May-13	9-May-14			
2.4.5-Trichlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td>3.8</td><td>6.7</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td>3.8</td><td>6.7</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	3.8	6.7	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID		
2.4.6-Trichlorophenol	1 μg/L	<lor< td=""><td>1.2</td><td><47.6</td><td><u>7.6</u></td><td><u>8.8</u></td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	1.2	<47.6	<u>7.6</u>	<u>8.8</u>	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<>	<lor< td=""><td>3</td></lor<>	3		
2.4-Dichlorophenol	1 μg/L	<lor< td=""><td>2.1</td><td>785</td><td><u>4310</u></td><td>6100</td><td><u>564</u></td><td>1.8</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	2.1	785	<u>4310</u>	6100	<u>564</u>	1.8	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<>	<lor< td=""><td>120</td></lor<>	120		
2.4-Dimethylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td><2.0</td><td><4.8</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td><2.0</td><td><4.8</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	<2.0	<4.8	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID		
2.6-Dichlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td>22.4</td><td>24.2</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td>22.4</td><td>24.2</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	22.4	24.2	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID		
2-Chlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td>29.3</td><td>177</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td>29.3</td><td>177</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	29.3	177	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<>	<lor< td=""><td>340</td></lor<>	340		
2-Methylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td><2.0</td><td><4.8</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td><2.0</td><td><4.8</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	<2.0	<4.8	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE		
2-Nitrophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td><2.0</td><td><4.8</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td><2.0</td><td><4.8</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	<2.0	<4.8	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID		
3- & 4-Methylphenol	2 μg/L	<lor< td=""><td><lor< td=""><td><95.2</td><td>32.1</td><td><9.7</td><td><38.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><95.2</td><td>32.1</td><td><9.7</td><td><38.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<95.2	32.1	<9.7	<38.5	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE		
4-Chloro-3-Methylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td>20.2</td><td>159</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td>20.2</td><td>159</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	20.2	159	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE		
Pentachlorophenol	2 μg/L	<lor< td=""><td><lor< td=""><td><95.2</td><td><4.0</td><td><9.7</td><td><38.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><95.2</td><td><4.0</td><td><9.7</td><td><38.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<95.2	<4.0	<9.7	<38.5	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<>	<lor< td=""><td>3.6</td></lor<>	3.6		
Phenol	1 μg/L	<lor< td=""><td><lor< td=""><td><47.6</td><td>9.3</td><td>77.7</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><47.6</td><td>9.3</td><td>77.7</td><td><19.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<47.6	9.3	77.7	<19.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<>	<lor< td=""><td>320</td></lor<>	320		

Guidelines: NEPM 2013: Groundwater Investigation Levels, Fresh Waters, slightly to moderately disturbed systems and per ANZECC 2000 Guidelines prior to 2013.

ID - indicates insufficient data for determination of a reliable GILs value

NE - Indicates GILs value not established

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Columns highlighted indicate results for current round of monitoring (July 2015)

<LOR

<LOR

15

<LOR

<LOR

45.5

<47.6

<95.2

<47.6

0.0

0.0

0.0

NA

<0.5

0.0

0.0

131

<47.6

<95.2

<47.6

Page 4 of 6

NE

3.6

320

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (June 2007 to July 2015)

<LOR

<LOR

48.1

Level of Freshwater Phenolic Compound Guidelines Reporting Monitoring Well ID/ Sample No. MW 19 DUP2 -RPD (TRIP1/MW19) Sample Date 2-Nov-12 5-Jul-15 22-Aug-08 30-Jun-11 22-May-12 19-May-13 9-May-14 9-May-14(ALS) 9-May-14(SGS) 22-May-12(ALS) 22-May-12(SGS 2-Nov-12(ALS) 5-July-15(ALS) (DUP1/MW19) 5-July-15(SGS) 1 µg/L <LOR <LOR <LOR <LOR <LOR <LOR <LOR <LOR <47.6 0.0 <47.6 2.4.5-Trichlorophenol ID 1 µg/L <LOR 2.2 12.0 <LOR 10.5 9.7 5.7 10 17.5 9.8 16.4 <47.6 0.0 <5.0 0.0 <47.6 2.4.6-Trichlorophenol 3 2.4-Dichlorophenol 1 μg/L <LOR 2240 3590 <LOR 3830 2420 1490 2110 3080 1000 3040 2230 -7.4 <5000 -82.9 2070 120 <LOR <LOR <LOR <LOR <LOR 1 μg/L <LOR <LOR <LOR <LOR <LOR <LOR <47.6 0.0 <0.5 0.0 <47.6 2.4-Dimethylphenol ID <LOR <LOR 20.6 1.2 16.2 7.6 12.5 14.5 <LOR 12.2 <47.6 0.0 2.6-Dichlorophenol 1 μg/L 9.9 <5.0 0.0 <47.6 ID <LOR 13 <LOR 29 23.7 13.5 36.9 22 34 <47.6 0.0 14.0 <47.6 2-Chlorophenol 1 μg/L 31.8 41.5 109 340 2-Methylphenol 1 μg/L <LOR <LOR 1.6 <LOR 1.4 2.6 1.3 10.4 16.8 8.4 147 <47.6 0.0 <5.0 0.0 <47.6 NE <LOR <47.6 0.0 <0.5 0.0 <47.6 1 μg/L 2-Nitrophenol ID <LOR <95.2 0.0 <5.0 0.0 <95.2 2 μg/L 3- & 4-Methylphenol NE

<LOR

<LOR

60.6

Guidelines: NEPM 2013: Groundwater Investigation Levels, Fresh Waters, slightly to moderately disturbed systems and per ANZECC 2000 Guidelines prior to 2013.

<LOR

<LOR

4.4

<LOR

<LOR

2.2

<LOR

<LOR

3.9

<LOR

<LOR

6.3

<LOR

<LOR

4.1

<LOR

<LOR

<LOR

ID - indicates insufficient data for determination of a reliable GILs value

1 μg/L

2 µg/L

1 μg/L

<LOR

<LOR

<LOR

NE - Indicates GILs value not established

4-Chloro-3-Methylphenol

Pentachlorophenol

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Columns highlighted indicate results for current round of monitoring (July 2015)

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (June 2007 to July 2015)

Page 5 of 6

Phenolic Compound	Level of Reporting			Monitoring W No. N	Freshwater Guidelines						
Sample Dat	23-Apr-08	DUP1 - 20/08/2008	20-Aug-08	DUP2 - 1/07/2011	1-Jul-11	22-May-12	2-Nov-12	23-Apr-08	4-Jul-15		
2.4.5-Trichlorophenol	1 μg/L	<9.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.4.6-Trichlorophenol	1 µg/L	<9.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<>	<lor< td=""><td>3</td></lor<>	3
2.4-Dichlorophenol	1 µg/L	<u>3520</u>	<u>4240</u>	5070	19.2	10.9	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<>	<lor< td=""><td>120</td></lor<>	120
2.4-Dimethylphenol	1 µg/L	<9.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.6-Dichlorophenol	1 µg/L	15.1	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2-Chlorophenol	1 µg/L	38.9	54.2	74.8	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<>	<lor< td=""><td>340</td></lor<>	340
2-Methylphenol	1 µg/L	<9.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
2-Nitrophenol	1 μg/L	<9.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
3- & 4-Methylphenol	2 μg/L	<19.3	<76.9	<77.4	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
4-Chloro-3-Methylphenol	1 μg/L	34.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
Pentachlorophenol	2 μg/L	<19.3	<76.9	<77.4	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<>	<lor< td=""><td>3.6</td></lor<>	3.6
Phenol	1 μg/L	<9.6	<38.5	<38.7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<>	<lor< td=""><td>320</td></lor<>	320

Guidelines: NEPM 2013: Groundwater Investigation Levels, Fresh Waters, slighlty to moderately disturbed systems and per ANZECC 2000 Guidelines prior to 2013.

ID - indicates insufficient data for determination of a reliable GILs value

NE - Indicates GILs value not established

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Columns highlighted indicate results for current round of monitoring (July 2015)

Groundwater Analytical Results

Phenolic Compounds

EHP - Binary Industries Site, Magnesium Street, Narangba, QLD (June 2007 to July 2015)

Page 6 of 6

Phenolic Compound	Level of Reporting	Monitoring Well ID/ Sample No. MW 23							Monitoring Well ID/ Sample No. MW 24 Monitoring Well ID/ Sample No. Backg'nd (the EHP background v						ell)	Freshwater Guidelines
Sample Date		23-Apr-08	DUP2 (SGS) 8/05/2014	8-May-14	DUP2 (SGS) 4/07/2015	RPD (DUP2/MW23)	4-Jul-15	23-Apr-08	4-Jul-15	1-Jul-11	22-May-12	1-Nov-12	18-May-13	8-May-14	4-Jul-15	
2.4.5-Trichlorophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.4.6-Trichlorophenol	1 μg/L	<lor< td=""><td>2.4</td><td><u>9.1</u></td><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	2.4	<u>9.1</u>	<5.0	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3</td></lor<></td></lor<>	<lor< td=""><td>3</td></lor<>	3
2.4-Dichlorophenol	1 μg/L	<lor< td=""><td><u>15,000</u></td><td><u>5140</u></td><td>1,100</td><td>135.1</td><td>5680</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<u>15,000</u>	<u>5140</u>	1,100	135.1	5680	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>120</td></lor<></td></lor<>	<lor< td=""><td>120</td></lor<>	120
2.4-Dimethylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2.6-Dichlorophenol	1 μg/L	<lor< td=""><td>5.0</td><td>12.3</td><td>5.7</td><td>157.2</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	5.0	12.3	5.7	157.2	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
2-Chlorophenol	1 μg/L	<lor< td=""><td>18</td><td>45.6</td><td><50.0</td><td>-0.8</td><td>49.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	18	45.6	<50.0	-0.8	49.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>340</td></lor<></td></lor<>	<lor< td=""><td>340</td></lor<>	340
2-Methylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
2-Nitrophenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>ID</td></lor<></td></lor<>	<lor< td=""><td>ID</td></lor<>	ID
3- & 4-Methylphenol	2 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><95.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><95.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><95.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<95.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
4-Chloro-3-Methylphenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NA</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NA</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>NA</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	NA	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>NE</td></lor<></td></lor<>	<lor< td=""><td>NE</td></lor<>	NE
Pentachlorophenol	2 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><95.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><95.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><95.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<95.2	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3.6</td></lor<></td></lor<>	<lor< td=""><td>3.6</td></lor<>	3.6
Phenol	1 μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><5.0</td><td>0.0</td><td><47.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<5.0	0.0	<47.6	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>320</td></lor<></td></lor<>	<lor< td=""><td>320</td></lor<>	320

Guidelines: NEPM 2013: Groundwater Investigation Levels, Fresh Waters, slighlty to moderately disturbed systems and per ANZECC 2000 Guidelines prior to 2013.

ID - indicates insufficient data for determination of a reliable GILs value

NE - Indicates GILs value not established

Exceedences: Bolded and underlined results exceed nominated assessment criteria

Columns highlighted indicate results for current round of monitoring (July 2015)

APPENDICIES

APPENDIX A LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

CERTIFICATE OF ANALYSIS

Work Order : **EB1522435** Page : 1 of 22

Client : GEO ENVIRONMENTAL CONSULTANTS Laboratory : Environmental Division Brisbane

Contact : MR MIKE TISDALL Contact : Customer Services EB

Address : 129 OUTLOOK CRESCENT Address : 2 Byth Street Stafford QLD Australia 4053

BARDON QLD, AUSTRALIA 4065

E-mail : mtisdall@bigpond.com : ALSEnviro.Brisbane@alsglobal.com

 Telephone
 : +61 33672266
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 33672377
 Facsimile
 : +61-7-3243 7218

Project : EHP Binary Site QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : 5010/7.GW Date Samples Received : 07-Jul-2015 12:25

C-O-C number : COC5010/7.GW Date Analysis Commenced : 08-Jul-2015

Sampler : ---- Issue Date : 17-Jul-2015 16:32

Site ; Narangba, Qld

Quote number No. of samples received : 21

No. of samples analysed : 21

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryKim McCabeSenior Inorganic ChemistBrisbane InorganicsLana NguyenSenior LCMS ChemistSydney OrganicsRyan Story2IC Organic Instrument ChemistBrisbane Organics

Page : 2 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

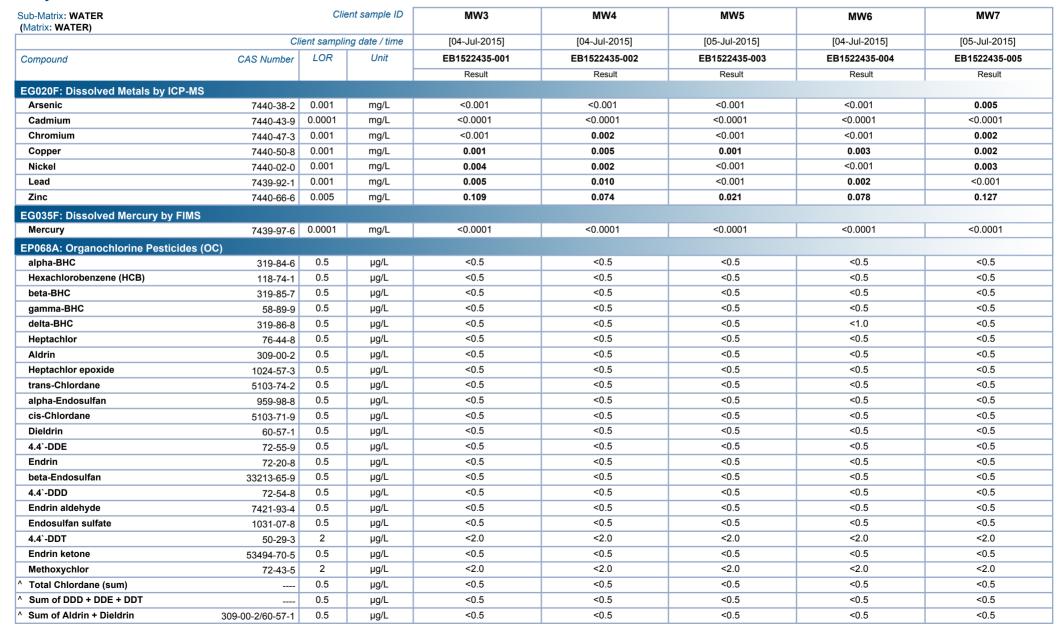
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

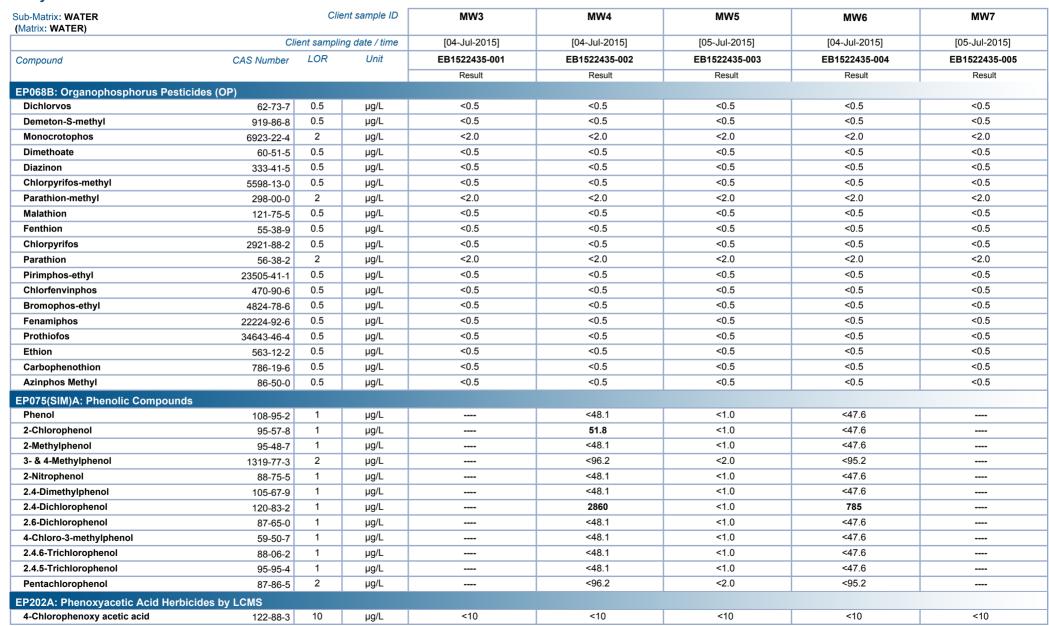

ø = ALS is not NATA accredited for these tests.

- EP068: The LOR values for delta-BHC, Dimethoate and Malathion for particular samples have been raised due to matrix interferences.
- EP068: Sample shows poor matrix spike recoveries due to matrix interferences.
- EP075(SIM): Particular samples required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly and surrogate recoveries not determined.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Page : 4 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 5 of 22 Work Order : EB1522435

2-Chlorophenol-D4

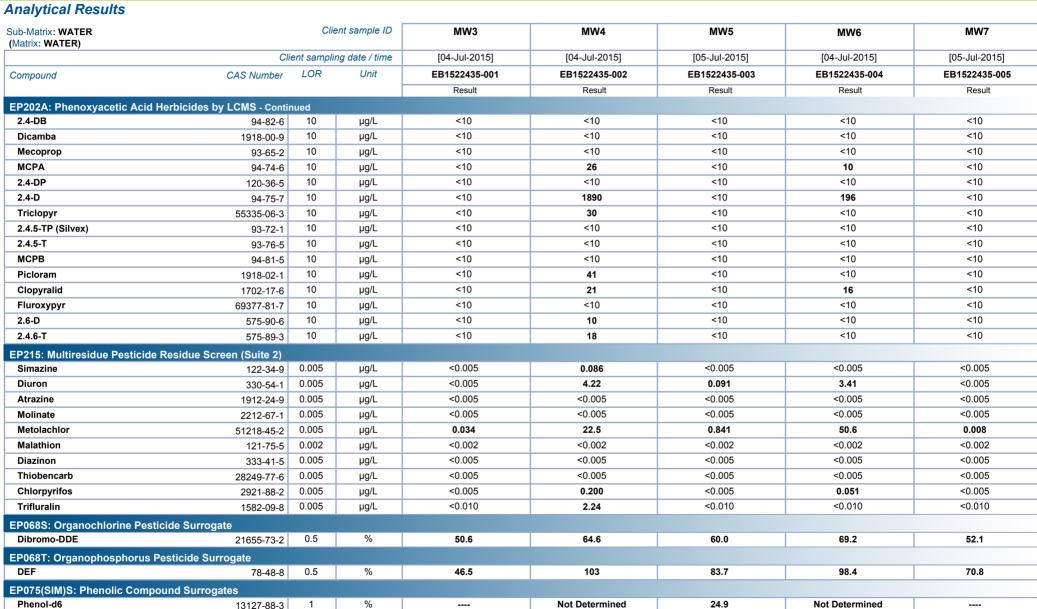
2.4.6-Tribromophenol

93951-73-6

118-79-6

1

%


%

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Not Determined

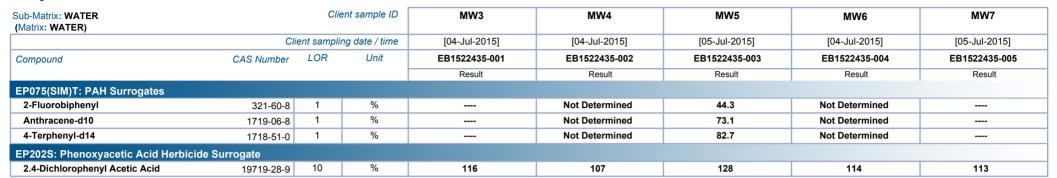
Not Determined

62.2

63.4

Not Determined

Not Determined



Page : 6 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

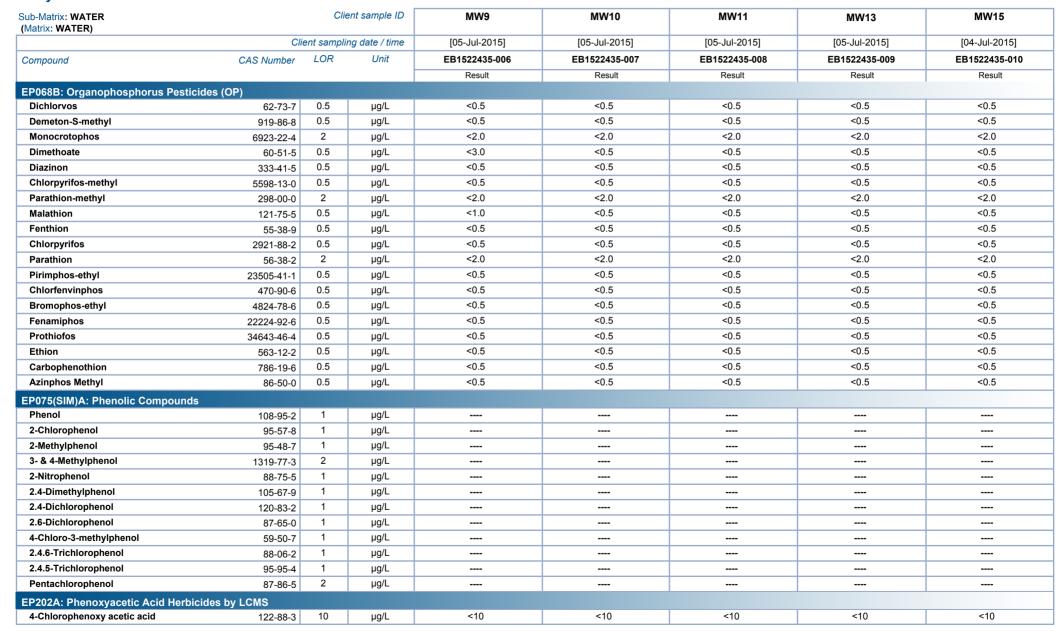
Project : EHP Binary Site



Page : 7 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Page : 8 of 22 Work Order : EB1522435

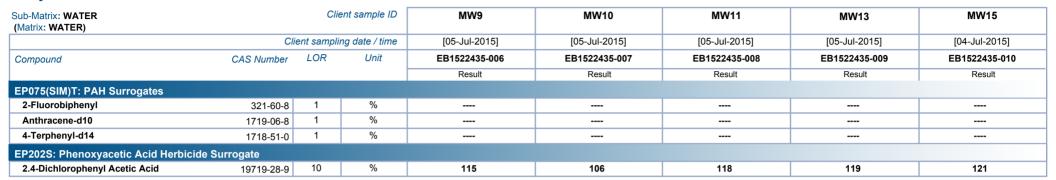
Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 9 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

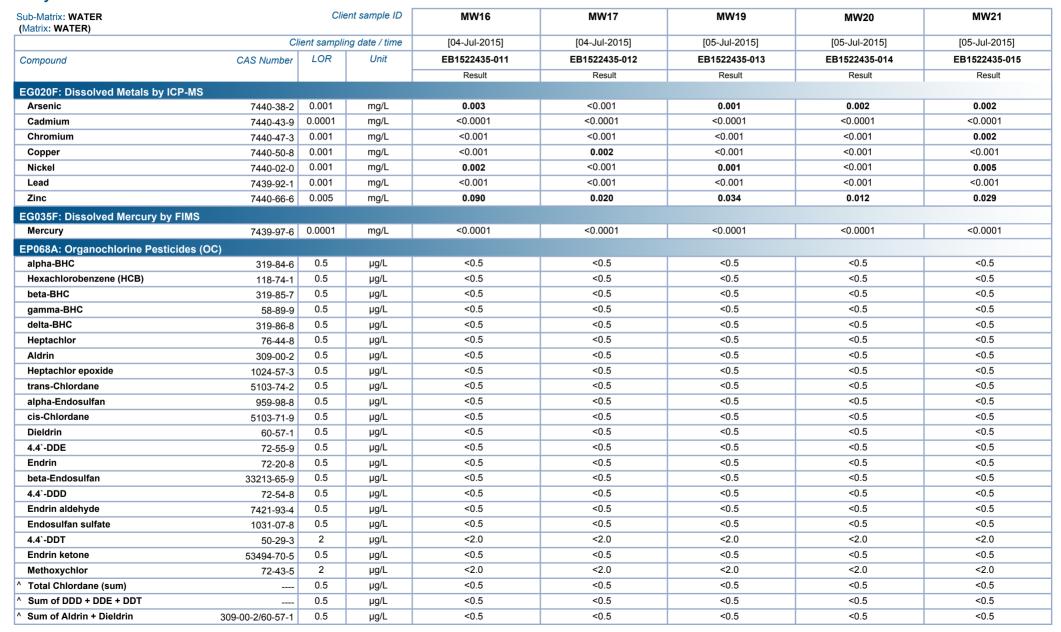
Project : EHP Binary Site



Page : 10 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Page : 11 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 12 of 22 Work Order : EB1522435

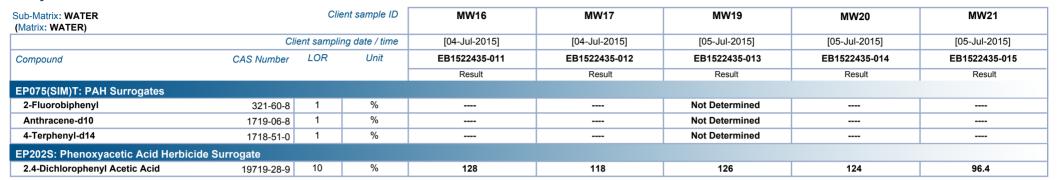
Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 13 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MW16	MW17	MW19	MW20	MW21
	CI	ient samplii	ng date / time	[04-Jul-2015]	[04-Jul-2015]	[05-Jul-2015]	[05-Jul-2015]	[05-Jul-2015]
Compound	CAS Number	LOR	Unit	EB1522435-011	EB1522435-012	EB1522435-013	EB1522435-014	EB1522435-015
•				Result	Result	Result	Result	Result
EP202A: Phenoxyacetic Acid H	lerbicides by LCMS - Conti	nued						
2.4-DB	94-82-6	10	μg/L	<10	<10	<10	<10	<10
Dicamba	1918-00-9	10	μg/L	<10	<10	<10	<10	<10
Mecoprop	93-65-2	10	μg/L	<10	<10	<10	<10	<10
MCPA	94-74-6	10	μg/L	<10	<10	<10	<10	<10
2.4-DP	120-36-5	10	μg/L	<10	<10	<10	<10	<10
2.4-D	94-75-7	10	μg/L	<10	<10	194	<10	<10
Triclopyr	55335-06-3	10	μg/L	<10	<10	<10	<10	<10
2.4.5-TP (Silvex)	93-72-1	10	μg/L	<10	<10	<10	<10	<10
2.4.5-T	93-76-5	10	μg/L	<10	<10	<10	<10	<10
МСРВ	94-81-5	10	μg/L	<10	<10	<10	<10	<10
Picloram	1918-02-1	10	μg/L	<10	<10	22	<10	<10
Clopyralid	1702-17-6	10	μg/L	<10	<10	<10	<10	<10
Fluroxypyr	69377-81-7	10	μg/L	<10	<10	<10	<10	<10
2.6-D	575-90-6	10	μg/L	<10	<10	<10	<10	<10
2.4.6-T	575-89-3	10	μg/L	<10	<10	<10	<10	<10
EP215: Multiresidue Pesticide I	Residue Screen (Suite 2)							
Simazine	122-34-9	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Diuron	330-54-1	0.005	μg/L	<0.005	<0.005	7.38	<0.005	<0.005
Atrazine	1912-24-9	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Molinate	2212-67-1	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Metolachlor	51218-45-2	0.005	μg/L	<0.005	0.014	11.4	0.133	<0.005
Malathion	121-75-5	0.002	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Diazinon	333-41-5	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Thiobencarb	28249-77-6	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Trifluralin	1582-09-8	0.005	μg/L	<0.010	<0.010	<0.010	<0.010	<0.010
P068S: Organochlorine Pestic	cide Surrogate							
Dibromo-DDE	21655-73-2	0.5	%	56.0	47.0	54.8	48.6	56.0
P068T: Organophosphorus Po	esticide Surrogate							
DEF	78-48-8	0.5	%	74.3	65.8	80.7	68.0	71.4
EP075(SIM)S: Phenolic Compo								
Phenol-d6	13127-88-3	1	%			Not Determined		
2-Chlorophenol-D4	93951-73-6	1	%			Not Determined		
2.4.6-Tribromophenol	118-79-6	1	%			Not Determined		

Page : 14 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 15 of 22 Work Order : EB1522435

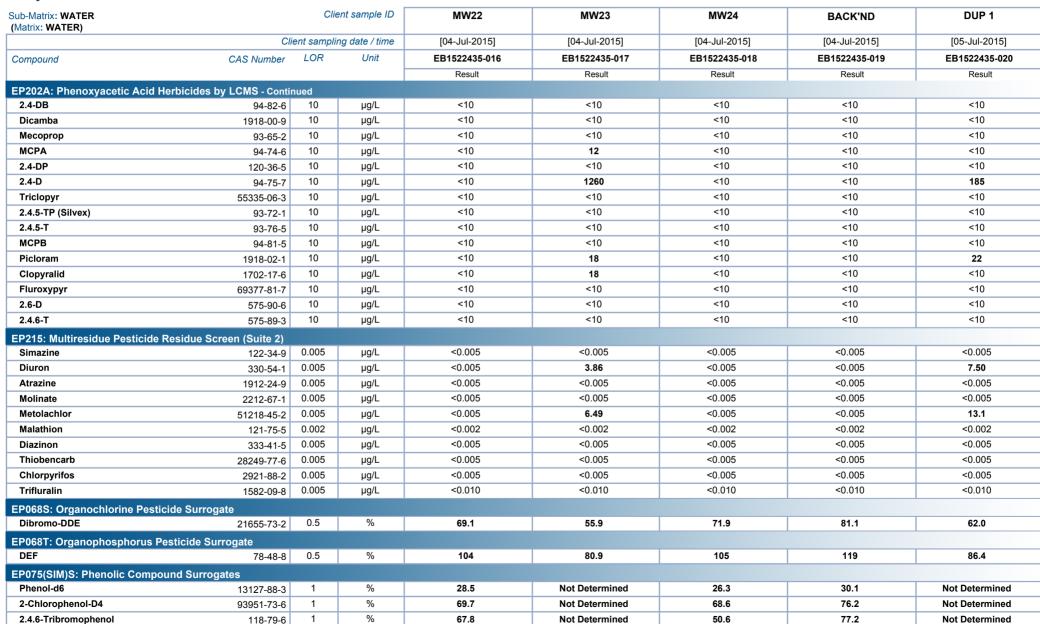
Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 16 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

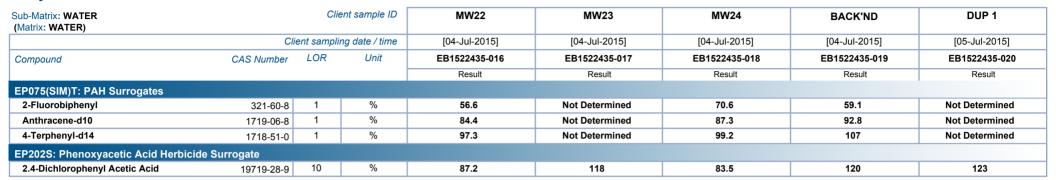
Project : EHP Binary Site



Page : 17 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Page : 18 of 22 Work Order : EB1522435

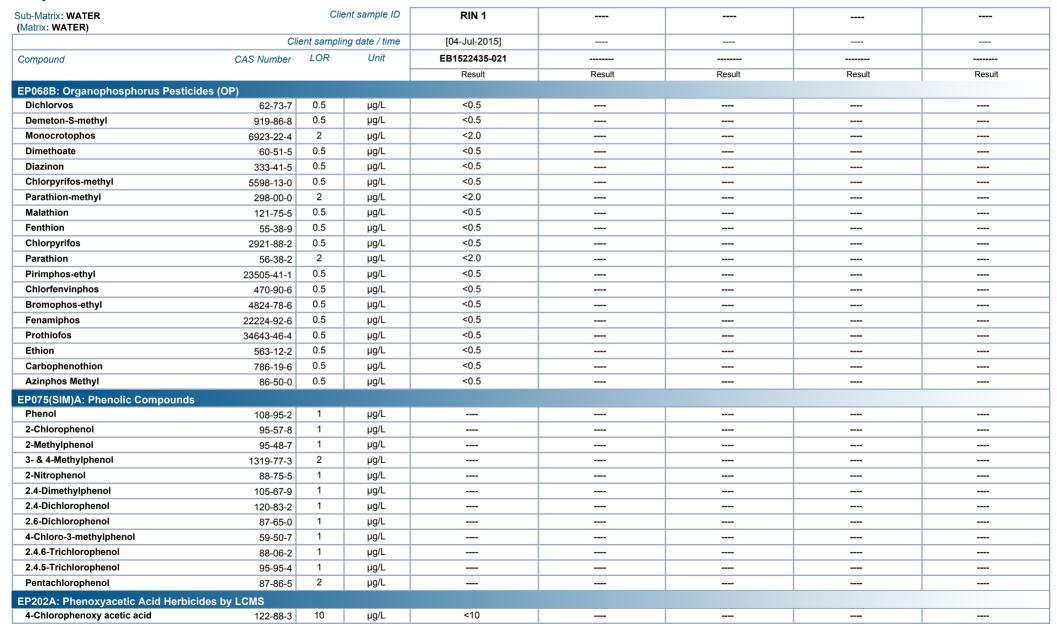
Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 19 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Sub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	RIN 1				
	CI	ient sampli	ng date / time	[04-Jul-2015]				
Compound	CAS Number	LOR	Unit	EB1522435-021				
•				Result	Result	Result	Result	Result
G020F: Dissolved Metals by ICP-M	IS							
Arsenic	7440-38-2	0.001	mg/L	<0.001				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Chromium	7440-47-3	0.001	mg/L	<0.001				
Copper	7440-50-8	0.001	mg/L	<0.001				
Nickel	7440-02-0	0.001	mg/L	<0.001				
Lead	7439-92-1	0.001	mg/L	<0.001				
Zinc	7440-66-6	0.005	mg/L	<0.005				
G035F: Dissolved Mercury by FIM								
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
P068A: Organochlorine Pesticide			_					
alpha-BHC	319-84-6	0.5	μg/L	<0.5				
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5				
beta-BHC	319-85-7	0.5	μg/L	<0.5				
gamma-BHC	58-89-9	0.5	μg/L	<0.5				
delta-BHC	319-86-8	0.5	μg/L	<0.5				
Heptachlor	76-44-8	0.5	μg/L	<0.5				
Aldrin	309-00-2	0.5	μg/L	<0.5				
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5				
trans-Chlordane	5103-74-2	0.5	μg/L	<0.5				
alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5				
cis-Chlordane	5103-71-9	0.5	μg/L	<0.5				
Dieldrin	60-57-1	0.5	μg/L	<0.5				
4.4`-DDE	72-55-9	0.5	μg/L	<0.5				
Endrin	72-20-8	0.5	μg/L	<0.5				
beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5				
4.4`-DDD	72-54-8	0.5	μg/L	<0.5				
Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5				
Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5				
4.4`-DDT	50-29-3	2	μg/L	<2.0				
Endrin ketone	53494-70-5	0.5	μg/L	<0.5				
Methoxychlor	72-43-5	2	μg/L	<2.0				
Total Chlordane (sum)		0.5	μg/L	<0.5				
Sum of DDD + DDE + DDT		0.5	μg/L	<0.5				
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	μg/L	<0.5				

Page : 20 of 22 Work Order : EB1522435

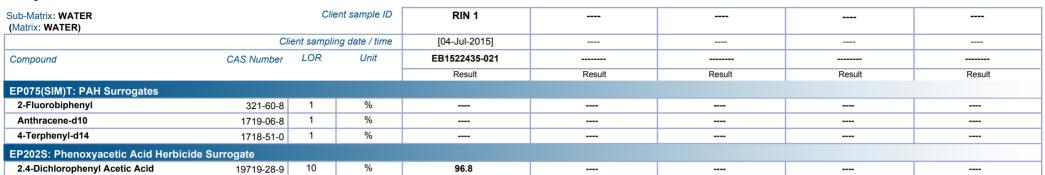
Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Page : 21 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site



Analytical Results								
Sub-Matrix: WATER (Matrix: WATER)			ent sample ID	RIN 1				
	Cli	ient sampli	ng date / time	[04-Jul-2015]				
Compound	CAS Number	LOR	Unit	EB1522435-021				
				Result	Result	Result	Result	Result
EP202A: Phenoxyacetic Acid Herbi	cides by LCMS - Conti	nued						
2.4-DB	94-82-6	10	μg/L	<10				
Dicamba	1918-00-9	10	μg/L	<10				
Mecoprop	93-65-2	10	μg/L	<10				
MCPA	94-74-6	10	μg/L	<10				
2.4-DP	120-36-5	10	μg/L	<10				
2.4-D	94-75-7	10	μg/L	<10				
Triclopyr	55335-06-3	10	μg/L	<10				
2.4.5-TP (Silvex)	93-72-1	10	μg/L	<10				
2.4.5-T	93-76-5	10	μg/L	<10				
МСРВ	94-81-5	10	μg/L	<10				
Picloram	1918-02-1	10	μg/L	<10				
Clopyralid	1702-17-6	10	μg/L	<10				
Fluroxypyr	69377-81-7	10	μg/L	<10				
2.6-D	575-90-6	10	μg/L	<10				
2.4.6-T	575-89-3	10	μg/L	<10				
EP215: Multiresidue Pesticide Resid	due Screen (Suite 2)							
Simazine	122-34-9	0.005	μg/L	<0.005				
Diuron	330-54-1	0.005	μg/L	<0.005				
Atrazine	1912-24-9	0.005	μg/L	<0.005				
Molinate	2212-67-1	0.005	μg/L	<0.005				
Metolachlor	51218-45-2	0.005	μg/L	<0.005				
Malathion	121-75-5	0.002	μg/L	<0.002				
Diazinon	333-41-5	0.005	μg/L	<0.005				
Thiobencarb	28249-77-6	0.005	μg/L	<0.005				
Chlorpyrifos	2921-88-2	0.005	μg/L	<0.005				
Trifluralin	1582-09-8	0.005	μg/L	<0.010				
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.5	%	52.4				
EP068T: Organophosphorus Pestic	ide Surrogate							
DEF	78-48-8	0.5	%	65.6				
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	1	%					
2-Chlorophenol-D4	93951-73-6	1	%					
2.4.6-Tribromophenol	118-79-6	1	%					

Page : 22 of 22 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

QUALITY CONTROL REPORT

Work Order : **EB1522435** Page : 1 of 15

Client : GEO ENVIRONMENTAL CONSULTANTS Laboratory : Environmental Division Brisbane

Contact : MR MIKE TISDALL : Customer Services EB

Address : 129 OUTLOOK CRESCENT Address : 2 Byth Street Stafford QLD Australia 4053

BARDON QLD, AUSTRALIA 4065

 $\hbox{E-mail} \hspace{1.5cm} : \hspace{.5cm} \hspace{.5cm$

 Telephone
 : +61 33672266
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 33672377
 Facsimile
 : +61-7-3243 7218

Project : EHP Binary Site : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number: 5010/7.GWDate Samples Received: 07-Jul-2015C-O-C number: COC5010/7.GWDate Analysis Commenced: 08-Jul-2015Sampler----Issue Date: 17-Jul-2015

Site : Narangba, Qld No. of samples received : 21

Quote number : ---- No. of samples analysed : 21

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabeSenior Inorganic ChemistBrisbane InorganicsLana NguyenSenior LCMS ChemistSydney OrganicsRyan Story2IC Organic Instrument ChemistBrisbane Organics

Page : 2 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

				Laboratory I	Duplicate (DUP) Report		
Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
Lot: 148526)							
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Copper	7440-50-8	0.001	mg/L	0.003	0.003	0.00	No Limit
EG020A-F: Lead	7439-92-1	0.001	mg/L	0.002	0.002	0.00	No Limit
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.078	0.078	0.00	0% - 50%
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
Lot: 148528)							
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.00	No Limit
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.005	0.005	0.00	No Limit
EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.029	0.028	0.00	No Limit
ot: 148527)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
ot: 148529)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
QC Lot: 148581)							
EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
EP068: 4.4`-DDE	72-55-9	0.5	µg/L	<0.5	<0.5	0.00	No Limit
EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
	319-84-6						No Limit
·							No Limit
·							No Limit
							No Limit
	EP068: alpha-BHC EP068: alpha-Endosulfan EP068: beta-BHC EP068: beta-Endosulfan	EP068: alpha-Endosulfan 959-98-8 EP068: beta-BHC 319-85-7	EP068: alpha-Endosulfan 959-98-8 0.5 EP068: beta-BHC 319-85-7 0.5	EP068: alpha-Endosulfan 959-98-8 0.5 μg/L EP068: beta-BHC 319-85-7 0.5 μg/L	EP068: alpha-Endosulfan 959-98-8 0.5 μg/L <0.5 EP068: beta-BHC 319-85-7 0.5 μg/L <0.5	EP068: alpha-Endosulfan 959-98-8 0.5 μg/L <0.5	EP068: alpha-Endosulfan 959-98-8 0.5 μg/L <0.5

Page : 4 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochlo	orine Pesticides (OC) (QC Lot: 148581) - continued							
EB1522435-002	MW4	EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin	72-20-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	2	μg/L	<2.0	<2.0	0.00	No Limit
		EP068: Methoxychlor	72-43-5	2	μg/L	<2.0	<2.0	0.00	No Limit
EP068A: Organochlo	orine Pesticides (OC) (QC Lot: 149263)							
EB1522435-001	MW3	EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin	72-20-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	2	μg/L	<2.0	<2.0	0.00	No Limit
		EP068: Methoxychlor	72-43-5	2	μg/L	<2.0	<2.0	0.00	No Limit
EB1522435-015	MW21	EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit

Page : 5 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 149263) - continued							
EB1522435-015	MW21	EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin	72-20-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	2	μg/L	<2.0	<2.0	0.00	No Limit
		EP068: Methoxychlor	72-43-5	2	μg/L	<2.0	<2.0	0.00	No Limit
EP068B: Organopho	osphorus Pesticides ((OP) (QC Lot: 148581)							
B1522435-002 MW4	EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	<0.5	0.00	No Limit	
		EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Diazinon	333-41-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dichlorvos	62-73-7	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Ethion	563-12-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Fenthion	55-38-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Malathion	121-75-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	2	μg/L	<2.0	<2.0	0.00	No Limit
		EP068: Parathion	56-38-2	2	μg/L	<2.0	<2.0	0.00	No Limit
EP068B: Organopho	osphorus Pesticid <u>es</u> ((OP) (QC Lot: 149263)							
EB1522435-001	MW3	EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit

Page : 6 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068B: Organoph	osphorus Pesticides (C	OP) (QC Lot: 149263) - continued							
EB1522435-001	MW3	EP068: Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Diazinon	333-41-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dichlorvos	62-73-7	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Ethion	563-12-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Fenthion	55-38-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Malathion	121-75-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	2	μg/L	<2.0	<2.0	0.00	No Limit
		EP068: Parathion	56-38-2	2	μg/L	<2.0	<2.0	0.00	No Limit
EB1522435-015	MW21	EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Diazinon	333-41-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dichlorvos	62-73-7	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Ethion	563-12-2	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Fenthion	55-38-9	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Malathion	121-75-5	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	<0.5	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	2	μg/L	<2.0	<2.0	0.00	No Limit
		EP068: Parathion	56-38-2	2	μg/L	<2.0	<2.0	0.00	No Limit
EP075(SIM)A: Phen	olic Compounds (QC I	Lot: 148579)							
EB1522435-002	MW4	EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	2860	2620	8.77	0% - 20%
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	51.8	48.1	7.39	No Limit
	I	(- 1			1			

Page : 7 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)A: Phen	olic Compounds (QC	Lot: 148579) - continued							
EB1522435-002	MW4	EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): Phenol	108-95-2	1	μg/L	<48.1	<48.1	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<96.2	<96.2	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<96.2	<96.2	0.00	No Limit
EP202A: Phenoxyao	cetic Acid Herbicides b	by LCMS (QC Lot: 150619)							
EB1522435-001	MW3	EP202-SL: 2.4.5-T	93-76-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4.5-TP (Silvex)	93-72-1	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-D	94-75-7	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-DB	94-82-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-DP	120-36-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 4-Chlorophenoxy acetic acid	122-88-3	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Clopyralid	1702-17-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Dicamba	1918-00-9	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Fluroxypyr	69377-81-7	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: MCPA	94-74-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: MCPB	94-81-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Mecoprop	93-65-2	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Picloram	1918-02-1	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Triclopyr	55335-06-3	10	μg/L	<10	<10	0.00	No Limit
EB1522435-011	MW16	EP202-SL: 2.4.5-T	93-76-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4.5-TP (Silvex)	93-72-1	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-D	94-75-7	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-DB	94-82-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-DP	120-36-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 4-Chlorophenoxy acetic acid	122-88-3	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Clopyralid	1702-17-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Dicamba	1918-00-9	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Fluroxypyr	69377-81-7	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: MCPA	94-74-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: MCPB	94-81-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Mecoprop	93-65-2	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Picloram	1918-02-1	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Triclopyr	55335-06-3	10	μg/L	<10	<10	0.00	No Limit
EP202A: Phenoxyac	cetic Acid Herbicides b	by LCMS (QC Lot: 150621)							
EB1522435-021	RIN 1	EP202-SL: 2.4.5-T	93-76-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4.5-TP (Silvex)	93-72-1	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-D	94-75-7	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 2.4-DB	94-82-6	10	μg/L	<10	<10	0.00	No Limit
	T.								<u> </u>

Page : 8 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP202A: Phenoxyac	etic Acid Herbicides by LCM	S (QC Lot: 150621) - continued							
EB1522435-021	RIN 1	EP202-SL: 2.4-DP	120-36-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: 4-Chlorophenoxy acetic acid	122-88-3	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Clopyralid	1702-17-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Dicamba	1918-00-9	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Fluroxypyr	69377-81-7	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: MCPA	94-74-6	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: MCPB	94-81-5	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Mecoprop	93-65-2	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Picloram	1918-02-1	10	μg/L	<10	<10	0.00	No Limit
		EP202-SL: Triclopyr	55335-06-3	10	μg/L	<10	<10	0.00	No Limit

Page : 9 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER Method Blank (MB)						Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG020F: Dissolved Metals by ICP-MS (QCLo	ot: 148526)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.3	88	116		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	90.5	88	108		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	92.4	87	113		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	92.6	88	114		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.6	89	110		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	92.6	89	113		
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	91.3	87	113		
EG020F: Dissolved Metals by ICP-MS (QCLo	ot: 148528)									
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.8	88	116		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.0	88	108		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.8	87	113		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	92.8	88	114		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	94.9	89	110		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	93.2	89	113		
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	91.9	87	113		
EG035F: Dissolved Mercury by FIMS (QCLot	t: 148527)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	103	84	118		
EG035F: Dissolved Mercury by FIMS (QCLot	:: 148529)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	103	84	118		
EP068A: Organochlorine Pesticides (OC) (Q	CLot: 148581)									
EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	5 μg/L	97.0	52	124		
EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	5 μg/L	96.7	56	122		
EP068: 4.4`-DDT	50-29-3	2	μg/L	<2.0	5 μg/L	101	35	131		
EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	5 μg/L	76.1	52	123		
EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	5 μg/L	84.2	45	125		
EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	5 μg/L	87.4	54	128		
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	5 μg/L	100	39	122		
EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	5 μg/L	93.3	50	126		
EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	5 μg/L	95.7	51	125		
EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	5 μg/L	82.9	53	112		
EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	5 μg/L	86.7	50	124		
EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	5 μg/L	98.4	37	124		
EP068: Endrin	72-20-8	0.5	μg/L	<0.5	5 μg/L	85.1	47	129		
EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	5 μg/L	101	49	131		

Page : 10 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 148	3581) - continued								
EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	5 μg/L	120	45	129	
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	5 μg/L	95.9	42	119	
EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	5 μg/L	81.2	45	118	
EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	5 μg/L	104	52	124	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	5 μg/L	74.3	41	121	
EP068: Methoxychlor	72-43-5	2	μg/L	<2.0	5 μg/L	67.2	32	135	
EP068: Sum of Aldrin + Dieldrin	309-00-2/60- 57-1	0.5	μg/L	<0.5					
EP068: Sum of DDD + DDE + DDT		0.5	μg/L	<0.5					
EP068: Total Chlordane (sum)		0.5	μg/L	<0.5					
EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	5 μg/L	97.0	48	125	
EP068A: Organochlorine Pesticides (OC) (QCLot: 149	9263)								
EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	5 μg/L	97.5	52	124	
EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	5 μg/L	92.6	56	122	
EP068: 4.4`-DDT	50-29-3	2	μg/L	<2.0	5 μg/L	102	35	131	
EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	5 μg/L	86.4	52	123	
EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	5 μg/L	91.2	45	125	
EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	5 μg/L	91.7	54	128	
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	5 μg/L	77.8	39	122	
EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	5 μg/L	100	50	126	
EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	5 μg/L	91.4	51	125	
EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	5 μg/L	87.9	53	112	
EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	5 μg/L	92.4	50	124	
EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	5 μg/L	102	37	124	
EP068: Endrin	72-20-8	0.5	μg/L	<0.5	5 μg/L	80.4	47	129	
EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	5 μg/L	92.3	49	131	
EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	5 μg/L	108	45	129	
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	5 μg/L	79.3	42	119	
EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	5 μg/L	79.6	45	118	
EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	5 μg/L	88.0	52	124	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	5 μg/L	82.8	41	121	
EP068: Methoxychlor	72-43-5	2	μg/L	<2.0	5 μg/L	87.4	32	135	
EP068: Sum of Aldrin + Dieldrin	309-00-2/60- 57-1	0.5	μg/L	<0.5					
EP068: Sum of DDD + DDE + DDT		0.5	μg/L	<0.5					
EP068: Total Chlordane (sum)		0.5	μg/L	<0.5					
EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	5 μg/L	90.3	48	125	
EP068B: Organophosphorus Pesticides (OP) (QCLot:	: 148581)								
EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	5 μg/L	# 28.0	44	130	

Page : 11 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery I	Limits (%)	
Method: Compound CAS	Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068B: Organophosphorus Pesticides (OP) (QCLot: 148581) - c	ontinued								
	4-78-6	0.5	μg/L	<0.5	5 μg/L	94.9	52	124	
EP068: Carbophenothion 78	6-19-6	0.5	μg/L	<0.5	5 μg/L	107	48	128	
EP068: Chlorfenvinphos 47	0-90-6	0.5	μg/L	<0.5	5 μg/L	102	50	127	
EP068: Chlorpyrifos 292	1-88-2	0.5	μg/L	<0.5	5 μg/L	92.8	54	119	
EP068: Chlorpyrifos-methyl 559	3-13-0	0.5	μg/L	<0.5	5 μg/L	83.6	50	118	
EP068: Demeton-S-methyl 91	9-86-8	0.5	μg/L	<0.5	5 μg/L	92.3	44	118	
EP068: Diazinon 33:	3-41-5	0.5	μg/L	<0.5	5 μg/L	108	44	129	
EP068: Dichlorvos 6	2-73-7	0.5	μg/L	<0.5	5 μg/L	90.2	49	115	
EP068: Dimethoate 6	0-51-5	0.5	μg/L	<0.5	5 μg/L	105	41	111	
EP068: Ethion 56	3-12-2	0.5	μg/L	<0.5	5 μg/L	111	50	127	
EP068: Fenamiphos 22222	4-92-6	0.5	μg/L	<0.5	5 μg/L	105	43	121	
EP068: Fenthion 5	5-38-9	0.5	μg/L	<0.5	5 μg/L	96.0	49	121	
EP068: Malathion 12	1-75-5	0.5	μg/L	<0.5	5 μg/L	108	51	122	
EP068: Monocrotophos 692	3-22-4	2	μg/L	<2.0	5 μg/L	# 15.2	16	49	
EP068: Parathion 5	6-38-2	2	μg/L	<2.0	5 μg/L	105	43	123	
EP068: Parathion-methyl 29	3-00-0		μg/L		5 μg/L	101	50	118	
EP068: Pirimphos-ethyl 2350	5-41-1	0.5	μg/L	<0.5	5 μg/L	89.4	52	126	
EP068: Prothiofos 3464	3-46-4	0.5	μg/L	<0.5	5 μg/L	107	53	126	
EP068B: Organophosphorus Pesticides (OP) (QCLot: 149263)									
	6-50-0	0.5	μg/L	<0.5	5 μg/L	62.0	44	130	
EP068: Bromophos-ethyl 482	1-78-6	0.5	μg/L	<0.5	5 μg/L	92.7	52	124	
EP068: Carbophenothion 78	3-19-6	0.5	μg/L	<0.5	5 μg/L	93.3	48	128	
EP068: Chlorfenvinphos 47	0-90-6	0.5	μg/L	<0.5	5 μg/L	98.0	50	127	
EP068: Chlorpyrifos 292	1-88-2	0.5	μg/L	<0.5	5 μg/L	88.5	54	119	
EP068: Chlorpyrifos-methyl 559	3-13-0	0.5	μg/L	<0.5	5 μg/L	84.1	50	118	
EP068: Demeton-S-methyl 91	9-86-8	0.5	μg/L	<0.5	5 μg/L	74.2	44	118	
EP068: Diazinon 33	3-41-5	0.5	μg/L	<0.5	5 μg/L	80.6	44	129	
EP068: Dichlorvos 6.	2-73-7	0.5	μg/L	<0.5	5 μg/L	90.4	49	115	
EP068: Dimethoate 6	0-51-5	0.5	μg/L	<0.5	5 μg/L	69.2	41	111	
EP068: Ethion 56	3-12-2	0.5	μg/L	<0.5	5 μg/L	94.4	50	127	
EP068: Fenamiphos 22222	4-92-6	0.5	μg/L	<0.5	5 μg/L	93.8	43	121	
EP068: Fenthion 5	5-38-9	0.5	μg/L	<0.5	5 μg/L	92.2	49	121	
EP068: Malathion 12	1-75-5	0.5	μg/L	<0.5	5 μg/L	97.7	51	122	
EP068: Monocrotophos 692	3-22-4	2	μg/L	<2.0	5 μg/L	# 3.95	16	49	
EP068: Parathion 5	6-38-2	2	μg/L	<2.0	5 μg/L	93.5	43	123	
EP068: Parathion-methyl 29	3-00-0		μg/L		5 μg/L	89.8	50	118	
EP068: Pirimphos-ethyl 2350	5-41-1	0.5	μg/L	<0.5	5 μg/L	95.2	52	126	
EP068: Prothiofos 3464	3-46-4	0.5	μg/L	<0.5	5 μg/L	92.7	53	126	
EP075(SIM)A: Phenolic Compounds (QCLot: 148579)									

Page : 12 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%) Recovery		/ Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)A: Phenolic Compounds (QCLot: 148579) - continued							
EP075(SIM): 2.4.5-Trichlorophenol 95-95-4	1	μg/L	<1.0	10 μg/L	74.3	54	108
EP075(SIM): 2.4.6-Trichlorophenol 88-06-2	1	μg/L	<1.0	10 μg/L	57.7	54	106
EP075(SIM): 2.4-Dichlorophenol 120-83-2	1	μg/L	<1.0	10 μg/L	61.7	55	115
EP075(SIM): 2.4-Dimethylphenol 105-67-9	1	μg/L	<1.0	10 μg/L	56.5	39	109
EP075(SIM): 2.6-Dichlorophenol 87-65-0	1	μg/L	<1.0	10 μg/L	59.6	53	106
EP075(SIM): 2-Chlorophenol 95-57-8	1	μg/L	<1.0	10 μg/L	67.9	52	102
EP075(SIM): 2-Methylphenol 95-48-7	1	μg/L	<1.0	10 μg/L	54.1	46	102
EP075(SIM): 2-Nitrophenol 88-75-5	1	μg/L	<1.0	10 μg/L	66.2	43	119
EP075(SIM): 3- & 4-Methylphenol 1319-77-3	2	μg/L	<2.0	20 μg/L	40.6	40	101
EP075(SIM): 4-Chloro-3-methylphenol 59-50-7	1	μg/L	<1.0	10 μg/L	59.8	40	102
EP075(SIM): Pentachlorophenol 87-86-5	2	μg/L	<2.0	20 μg/L	77.8	21	135
EP075(SIM): Phenol 108-95-2	1	μg/L	<1.0	10 μg/L	30.3	19	54
EP202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot: 150619)							
EP202-SL: 2.4.5-T 93-76-5	10	μg/L	<10	100 μg/L	84.0	78	140
EP202-SL: 2.4.5-TP (Silvex) 93-72-1	10	μg/L	<10	100 μg/L	83.1	75	143
EP202-SL: 2.4-D 94-75-7	10	μg/L	<10	100 μg/L	85.2	77	139
EP202-SL: 2.4-DB 94-82-6	10	μg/L	<10	100 μg/L	88.1	65	147
EP202-SL: 2.4-DP 120-36-5	10	μg/L	<10	100 μg/L	87.6	76	144
EP202-SL: 4-Chlorophenoxy acetic acid 122-88-3	10	μg/L	<10	100 μg/L	88.5	82	136
EP202-SL: Clopyralid 1702-17-6	10	μg/L	<10	100 μg/L	104	70	145
EP202-SL: Dicamba 1918-00-9	10	μg/L	<10	100 μg/L	93.2	83	137
EP202-SL: Fluroxypyr 69377-81-7	10	μg/L	<10	100 μg/L	87.0	77	145
EP202-SL: MCPA 94-74-6	10	μg/L	<10	100 μg/L	99.5	76	140
EP202-SL: MCPB 94-81-5	10	μg/L	<10	100 μg/L	83.6	69	139
EP202-SL: Mecoprop 93-65-2	10	μg/L	<10	100 μg/L	87.4	75	143
EP202-SL: Picloram 1918-02-1	10	μg/L	<10	100 μg/L	93.8	70	144
EP202-SL: Triclopyr 55335-06-3	10	μg/L	<10	100 μg/L	85.9	77	141
EP202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot: 150621)							
EP202-SL: 2.4.5-T 93-76-5	10	μg/L	<10	100 μg/L	108	78	140
EP202-SL: 2.4.5-TP (Silvex) 93-72-1	10	μg/L	<10	100 μg/L	108	75	143
EP202-SL: 2.4-D 94-75-7	10	μg/L	<10	100 μg/L	98.0	77	139
EP202-SL: 2.4-DB 94-82-6	10	μg/L	<10	100 μg/L	100	65	147
EP202-SL: 2.4-DP 120-36-5	10	μg/L	<10	100 μg/L	109	76	144
EP202-SL: 4-Chlorophenoxy acetic acid 122-88-3	10	μg/L	<10	100 μg/L	101	82	136
EP202-SL: Clopyralid 1702-17-6	10	μg/L	<10	100 μg/L	96.1	70	145
EP202-SL: Dicamba 1918-00-9	10	μg/L	<10	100 μg/L	107	83	137
EP202-SL: Fluroxypyr 69377-81-7	10	μg/L	<10	100 μg/L	104	77	145
EP202-SL: MCPA 94-74-6	10	μg/L	<10	100 μg/L	104	76	140
EP202-SL: MCPB 94-81-5	10	μg/L	<10	100 μg/L	91.2	69	139

Page : 13 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS	Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP202A: Phenoxyacetic Acid Herbicides by LCMS (QCLot: 15062	1) - cont	tinued						
EP202-SL: Mecoprop	3-65-2	10	μg/L	<10	100 μg/L	110	75	143
EP202-SL: Picloram 191	8-02-1	10	μg/L	<10	100 μg/L	113	70	144
EP202-SL: Triclopyr 5533	5-06-3	10	μg/L	<10	100 μg/L	110	77	141
EP215: Multiresidue Pesticide Residue Screen (Suite 2) (QCLot:	50610)							
EP215-LL: Atrazine	2-24-9	0.005	μg/L	<0.005	0.0125 μg/L	101	65	130
EP215-LL: Chlorpyrifos 292	1-88-2	0.005	μg/L	<0.005	0.0125 μg/L	90.3	65	130
EP215-LL: Diazinon 33	3-41-5	0.005	μg/L	<0.005	0.0125 μg/L	98.4	65	130
EP215-LL: Diuron 33	0-54-1	0.005	μg/L	<0.005	0.0125 μg/L	102	65	130
EP215-LL: Malathion	1-75-5	0.002	μg/L	<0.002	0.0125 μg/L	110	65	130
EP215-LL: Metolachlor 5121	8-45-2	0.005	μg/L	<0.005	0.0125 μg/L	97.7	65	130
EP215-LL: Molinate 221	2-67-1	0.005	μg/L	<0.005	0.0125 μg/L	106	65	130
EP215-LL: Simazine	2-34-9	0.005	μg/L	<0.005	0.0125 μg/L	103	65	130
EP215-LL: Thiobencarb 2824	9-77-6	0.005	μg/L	<0.005	0.0125 μg/L	102	65	130
EP215-LL: Trifluralin 158	2-09-8	0.005	μg/L	<0.010	0.0125 μg/L	100	65	130
EP215: Multiresidue Pesticide Residue Screen (Suite 2) (QCLot:	50611)							
EP215-LL: Atrazine	2-24-9	0.005	μg/L	<0.005	0.0125 μg/L	108	65	130
EP215-LL: Chlorpyrifos 292	1-88-2	0.005	μg/L	<0.005	0.0125 μg/L	91.3	65	130
EP215-LL: Diazinon 33	3-41-5	0.005	μg/L	<0.005	0.0125 μg/L	103	65	130
EP215-LL: Diuron 33	0-54-1	0.005	μg/L	<0.005	0.0125 μg/L	99.0	65	130
EP215-LL: Malathion	1-75-5	0.002	μg/L	<0.002	0.0125 μg/L	109	65	130
EP215-LL: Metolachlor 5121	8-45-2	0.005	μg/L	<0.005	0.0125 μg/L	109	65	130
EP215-LL: Molinate 221	2-67-1	0.005	μg/L	<0.005	0.0125 μg/L	105	65	130
EP215-LL: Simazine	2-34-9	0.005	μg/L	<0.005	0.0125 μg/L	101	65	130
EP215-LL: Thiobencarb 2824	9-77-6	0.005	μg/L	<0.005	0.0125 μg/L	105	65	130
EP215-LL: Trifluralin 158	2-09-8	0.005	μg/L	<0.010	0.0125 μg/L	77.4	65	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report								
		Spike SpikeRecovery(%) Recovery I				imits (%)					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EG020F: Dissolved Metals by ICP-MS (QCLot: 148526)											
EB1522387-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.1 mg/L	90.0	70	130				
		EG020A-F: Cadmium	7440-43-9	0.1 mg/L	90.2	70	130				
		EG020A-F: Chromium	7440-47-3	0.1 mg/L	87.0	70	130				
		EG020A-F: Copper	7440-50-8	0.2 mg/L	91.2	70	130				

Page : 14 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020F: Dissolved	Metals by ICP-MS (QCLot: 148526) - conti	nued					
B1522387-001	Anonymous	EG020A-F: Lead	7439-92-1	0.1 mg/L	90.4	70	130
		EG020A-F: Nickel	7440-02-0	0.1 mg/L	89.1	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	93.1	70	130
G020F: Dissolved	Metals by ICP-MS (QCLot: 148528)						
B1522435-016	MW22	EG020A-F: Arsenic	7440-38-2	0.1 mg/L	92.0	70	130
		EG020A-F: Cadmium	7440-43-9	0.1 mg/L	90.8	70	130
		EG020A-F: Chromium	7440-47-3	0.1 mg/L	89.0	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	89.8	70	130
		EG020A-F: Lead	7439-92-1	0.1 mg/L	93.3	70	130
		EG020A-F: Nickel	7440-02-0	0.1 mg/L	88.1	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	90.6	70	130
G035F: Dissolved	Mercury by FIMS (QCLot: 148527)						
31522387-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	89.2	70	130
3035F: Dissolved	Mercury by FIMS (QCLot: 148529)			, ,			
B1522435-017	MW23	ECO255: Massure	7439-97-6	0.01 mg/L	87.9	70	130
		EG035F: Mercury	1439-91-0	0.01 mg/L	07.9	70	130
	lorine Pesticides (OC) (QCLot: 148581)						
B1522435-003	MW5	EP068: 4.4`-DDT	50-29-3	4 μg/L	110	70	130
		EP068: Aldrin	309-00-2	1 μg/L	77.7	70	130
		EP068: Dieldrin	60-57-1	1 μg/L	79.2	70	130
		EP068: Endrin	72-20-8	4 μg/L	85.0	70	130
		EP068: gamma-BHC	58-89-9	1 μg/L	110	70	130
		EP068: Heptachlor	76-44-8	1 μg/L	96.5	70	130
068A: Organoch	lorine Pesticides (OC) (QCLot: 149263)						
31522435-005	MW7	EP068: 4.4`-DDT	50-29-3	4 μg/L	# 56.2	70	130
		EP068: Aldrin	309-00-2	1 μg/L	95.3	70	130
		EP068: Dieldrin	60-57-1	1 μg/L	94.2	70	130
		EP068: Endrin	72-20-8	4 μg/L	85.1	70	130
		EP068: gamma-BHC	58-89-9	1 μg/L	104	70	130
		EP068: Heptachlor	76-44-8	1 μg/L	96.1	70	130
P068B: Organoph	osphorus Pesticides (OP) (QCLot: 148581)						
B1522435-003	MW5	EP068: Bromophos-ethyl	4824-78-6	1 μg/L	85.5	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	1 μg/L	87.4	70	130
		EP068: Diazinon	333-41-5	1 μg/L	# 132	70	130
		EP068: Pirimphos-ethyl	23505-41-1	1 μg/L	99.0	70	130
		EP068: Prothiofos	34643-46-4	1 μg/L	119	70	130
068B: Organoph	osphorus Pesticides (OP) (QCLot: 149263)						
B1522435-005	MW7	EP068: Bromophos-ethyl	4824-78-6	1 μg/L	91.4	70	130

Page : 15 of 15 Work Order : EB1522435

Client : GEO ENVIRONMENTAL CONSULTANTS

Project : EHP Binary Site

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
_aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP068B: Organopl	nosphorus Pesticides (OP) (QCLot: 149263) - continue	ed					
EB1522435-005	MW7	EP068: Chlorpyrifos-methyl	5598-13-0	1 μg/L	94.1	70	130
		EP068: Diazinon	333-41-5	1 μg/L	104	70	130
		EP068: Pirimphos-ethyl	23505-41-1	1 μg/L	101	70	130
		EP068: Prothiofos	34643-46-4	1 μg/L	87.2	70	130
EP202A: Phenoxya	acetic Acid Herbicides by LCMS (QCLot: 150619)						
EB1522435-001	MW3	EP202-SL: 2.4.5-T	93-76-5	100 μg/L	120	78	140
		EP202-SL: 2.4-D	94-75-7	100 μg/L	122	77	139
		EP202-SL: Clopyralid	1702-17-6	100 μg/L	# 59.0	70	145
		EP202-SL: MCPA	94-74-6	100 μg/L	131	76	140
		EP202-SL: Mecoprop	93-65-2	100 μg/L	119	75	143
		EP202-SL: Picloram	1918-02-1	100 μg/L	89.8	70	144
		EP202-SL: Triclopyr	55335-06-3	100 μg/L	127	77	141
EP202A: Phenoxya	ncetic Acid Herbicides by LCMS (QCLot: 150621)						
EB1522435-021	RIN 1	EP202-SL: 2.4.5-T	93-76-5	100 μg/L	85.1	78	140
		EP202-SL: 2.4-D	94-75-7	100 μg/L	83.5	77	139
		EP202-SL: Clopyralid	1702-17-6	100 μg/L	106	70	145
		EP202-SL: MCPA	94-74-6	100 μg/L	92.4	76	140
		EP202-SL: Mecoprop	93-65-2	100 μg/L	89.8	75	143
		EP202-SL: Picloram	1918-02-1	100 μg/L	108	70	144
		EP202-SL: Triclopyr	55335-06-3	100 μg/L	83.9	77	141

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1522435

Client : GEO ENVIRONMENTAL Laboratory : Environmental Division Brisbane

CONSULTANTS

Contact : MR MIKE TISDALL Contact : Customer Services EB

Address : 129 OUTLOOK CRESCENT Address : 2 Byth Street Stafford QLD Australia

BARDON QLD, AUSTRALIA 4065 4053

 Telephone
 : +61 33672266
 Telephone
 : +61-7-3243 7222

 Facsimile
 : +61 07 33672377
 Facsimile
 : +61-7-3243 7218

Project : EHP Binary Site Page : 1 of 3

Order number : 5010/7.GW Quote number : EB2013GEOENV0277 (BN/374/13)

C-O-C number : COC5010/7.GW QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Site : Narangba, Qld

Sampler :

Dates

Date Samples Received : 07-Jul-2015 12:25 PM Issue Date : 08-Jul-2015

Client Requested Due : 14-Jul-2015 Scheduled Reporting Date : 14-Jul-2015

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Intact.

No. of coolers/boxes : 5 Temperature : 10.2°C, 11.6°C, 10.3°C,

9.8°C, 11.3°C - Ice Bricks

present

Receipt Detail : MEDIUM ESKIES No. of samples received / analysed : 21 / 21

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances

- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please be advised that a Preliminary Report will be submitted and the Low Level Multiresidue and Herbicides is expected by 17/7/15. Please contact ALS Brisbane Client Services Department to add a directive for these samples at ALSEnviro.Brisbane@alsglobal.com
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Speciality organics analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Please direct any turn around / technical gueries to the laboratory contact designated above.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.
- Please direct any queries related to sample condition / numbering / breakages to John Pickering (John.Pickering@alsglobal.com).
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

: 08-Jul-2015 Issue Date

Page

2 of 3 EB1522435 Amendment 0 Work Order

Client : GEO ENVIRONMENTAL CONSULTANTS

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determination	ry for the executi may contain ad	be part of a laboratory on of client requested ditional analyses, such content and preparation	WATER - EP075 SIM Phenols only SIM - Phenols only	WATER - EP202SL Phenoxyacetic Acid	WATER - EP215LL Multiresidue Pesticide Screen (Suite 2) - Low	WATER - W-02 8 Metals	WATER - W-12 OC/OP Pesticides
Laboratory sample	Client sampling	Client sample ID	'ATER IM - Pt	'ATER	'ATER ultires	WATER 8	'ATER C/OP
ID EB1522435-001	date / time [04-Jul-2015]	MW3	≥ ∞	<u> </u>	<u> </u>	≥ ∞	<u> </u>
EB1522435-001	[04-Jul-2015]	MW4	√	√	√	√	√
EB1522435-003	[05-Jul-2015]	MW5	·	· ✓	√	· ✓	· ✓
EB1522435-004	[04-Jul-2015]	MW6	·	√	<i>√</i>	· ✓	1
EB1522435-005	[05-Jul-2015]	MW7	<u> </u>	√	√	√	√
EB1522435-006	[05-Jul-2015]	MW9		· ✓	√	√	√
EB1522435-007	[05-Jul-2015]	MW10		· ✓	· ✓	· ✓	· ✓
EB1522435-008	[05-Jul-2015]	MW11		√	1	√	√
EB1522435-009	[05-Jul-2015]	MW13		√	√	√	· ✓
EB1522435-010	[04-Jul-2015]	MW15		√	√	√	1
EB1522435-011	[04-Jul-2015]	MW16		√	√	1	1
EB1522435-012	[04-Jul-2015]	MW17		√	√	√	1
EB1522435-013	[05-Jul-2015]	MW19	√	1	√	√	1
EB1522435-014	[05-Jul-2015]	MW20		1	1	1	1
EB1522435-015	[05-Jul-2015]	MW21		√	1	√	√
EB1522435-016	[04-Jul-2015]	MW22	√	1	1	1	1
EB1522435-017	[04-Jul-2015]	MW23	1	√	✓	√ ·	√
EB1522435-018	[04-Jul-2015]	MW24	·	·	√	· ✓	√
EB1522435-019	[04-Jul-2015]	BACK'ND	· ✓	· ✓	1	· ✓	1
EB1522435-020	[05-Jul-2015]	DUP 1	1	1	1	√	/
EB1522435-021	[04-Jul-2015]	RIN 1		1	1	1	√
	· •						

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 08-Jul-2015

 Page
 : 3 of 3

 Work Order
 : EB1522435 Amendment 0

 Client
 : GEO ENVIRONMENTAL CONSULTANTS

Requested Deliverables

MIKE TISDALL

- *AU Certificate of Analysis - NATA (COA)	Email	mtisdall@bigpond.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	mtisdall@bigpond.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	mtisdall@bigpond.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mtisdall@bigpond.com
- A4 - AU Tax Invoice (INV)	Email	mtisdall@bigpond.com
- Chain of Custody (CoC) (COC)	Email	mtisdall@bigpond.com
- EDI Format - ENMRG (ENMRG)	Email	mtisdall@bigpond.com
- EDI Format - XTab (XTAB)	Email	mtisdall@bigpond.com
RESULTS ADDRESS		

RESULTS ADDRESS		
- *AU Certificate of Analysis - NATA (COA)	Email	tsdownunda@gmail.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	tsdownunda@gmail.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	tsdownunda@gmail.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	tsdownunda@gmail.com
- A4 - AU Tax Invoice (INV)	Email	tsdownunda@gmail.com
- Chain of Custody (CoC) (COC)	Email	tsdownunda@gmail.com
- EDI Format - ENMRG (ENMRG)	Email	tsdownunda@gmail.com
- EDI Format - XTab (XTAB)	Email	tsdownunda@gmail.com

Chain of Custody Form

No.: COC5010/7.GW

From: -GeoEnvironmental Consultants P/L To: Australian Laboratory Services GeoEnvironmental Consultants Contact: 129 Outlook Crescent. 32 Shand Street S. Termont-Schenk BARDON, OLD 4065 STAFFORD, OLD 4053 Ph: 0418-883 152 E: mtisdall@bigpond.com tsdownunda@email.com ALS Ouotation: BN/288/15 Site Name: **EHP Binary Site** Contact: Mr M. Heery Environmental Division Ph: 07 3367 2266 M -0407 178 802 Location Code: (07)32437222 Narangba, Old Brisbane Project Manager. Mike Tisdall / S. Termont-Schenk Order No.: 5010/7.GW Turnaround Time.: 48hr 3d Work Order Reference Preservation Date Collected Sample Type Analyses Requested Sample No. of EB1522435 No. Containers No. Method Soil Water Class Ice Acid: Plastic DisMetals PhenoxyAcid OC/OP (As, Cd. Herbicides & Phenois Pesticide Cr. Cu. LLmulti-8 Pb. Ni. residue pest Zn, Hg) screen 5/07/2015 J/4G MW1 X X X X X X X X X X X X Method Codes X X X $\overline{\mathbf{x}}$ X X 4 MW 3 4/07/2015 Phenols: X X X X X X X MW 4 4/07/2015 4 EP075A(sim) X X X X X X X MW 5 5/07/2015 4 Metals: X X W-02/USEPA MW 6 X X X 4 X X 1 4/07/2015 6020 X X 5/07/2015 $\overline{\mathbf{x}}$ X X X 4 1 **MW** 7 Phenoxy Acid Herbicides: X X X EP202SL MW 9 5/07/2015 X X X 4 X X X X X X 1 MW 10 5/07/2015 Multiresidue Pesticide screen - Low level X X $\overline{\mathbf{X}}$ X X MW 11 5/07/2015 X 4 1 EP215LL MW 13 X X X 1 X X X 5/07/2015 4 OC/OP: X $\overline{\mathbf{x}}$ X X W-12/USEPA X X 1 MW 15 4/07/2015 10 3510/8270 X X X X X MW 16 4/07/2015 4 X X X X X X X MW 17 4/07/2015 Couriered by: Dropped Off Date: 7-7-15 Date: 7-7-15 Relinquished by: P. McGurgan Received by: Date: 7/7/15 PRGUNEZ Time: 12 15 Time: 12.15 Time: 12 - 25 0413 258 403 CHIRES

Note: 1.

Chain of Custody Form

No.: COC5010/7.GW

		GeoEnvironmental C 129 Outlook Crescen BARDON, QLD 4 E: mtisdall@bigpond tsdownunda@gmail.	nt, 065 L <u>com</u>	s P/L	Ge	:oEnv	VITO Specia	IIIICII É É Using in the Earth an	Consideration of the state of t	sultants	To:	Australian 32 Shand : STAFFOR ALS Qu				
						Vame:		EHP Binar			Conta		•			
	Ph: 07 3367 2266 M - 0407 178 802 Project Manager. Mike Tisdall / S. Termont-Schenk									(07)32437222	Fax					
	ect Manager.					r No.:	000000000000000000000000000000000000000	5010/7.GW			L	round Time.:	48hr 3da	y 5day 7day+		
Lab No.	Sample No.	Date Collected	Samp	le Type	5 C. S. S. S. S. S. S.	eservatio Method	m	No. Conta	TO SECURE A		Analyse	s Requested		Comments		
			Soll	Water	Ice	Acid	None	Glass	Plastic	Phenols	DisMetals (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg)	PhenoxyAcid Herbicides & LLmulti- residue pest screen	OC/OP Pesticide	Other tests (specifiy) or notes		
1.3	MW 19	5/07/2015		X	X	X		4	1	X	X	X	X			
14	MW 20	5/07/2015		X	X	X		4	1		X	X	X	Method Codes		
15	MW 21	5/07/2015		X	X	X		4	1		X	X	X	Phenols;		
(6	MW 22	4/07/2015		X	X	X		4	1	X	X	X	X	EP075A(sim)		
17	MW 23	4/07/2015		X	X	X		4	1	X	X	X	X	Metals;		
18	MW 24	4/07/2015		X	X	X		4	1	X	X	X	X	W-02/USEPA 6020		
(4	BACKG'ND	4/07/2015		X	X	X		4	1	X	X	X	X	Phenoxy Acid Herbicides;		
20	DUP 1	5/07/2015		X	X	X		4	1	X	X	X	X	EP202SL		
21	RIN 1	4/07/2015		X	X	X		4	1		Х	X	X	Multiresidue Pesticide screen – Low level EP215LL		
			:											OC/OP;		
									<u>.</u>					W-12/USEPA 3510/8270		
Relin	quished by: P. I	McGurgan	Date: 7	-7- <i>15</i>	Cour	iered by	<u></u>	Dropped O	ff Da	ite:7-7-15	Received	by:		Date: 7/3/15		
	0413 258 403 Time: 12.15			Couriered by: Dropped Off Date: 7-7-15 Re				1 6	HRZS	Time: /2-25						

ANALYTICAL REPORT

LABORATORY DETAILS CLIENT DETAILS -

MICHAEL TISDALL & Steven Termont-Schenck **Andrew Tomlins** Contact Manager

Geoenvironmental Consultants SGS Brisbane Environmental Client Laboratory

129 Outlook Crescent Address 59 Bancroft Road BARDON QLD 4065 PINKENBA QLD 4008

Telephone 07 3367 2266 Telephone +61 7 3622 4700

61 07 33672377 +61 7 3622 4799 Facsimile Facsimile au.environmental.brisbane@sgs.com mtisdall@bigpond.com Fmail Email

Project Narangba Q Event 11 EHP Binary Site SGS Reference BE013599 R1 5010/7_GW 0000042056 Order Number Report Number 2 31 Jul 2015 Date Reported Samples

07 Jul 2015 14 Jul 2015 Date Started Date Received

COMMENTS

Address

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(20707/1706).

This report cancels and supersedes the report No.BE013599 R0 dated 5th July 2015 issued by SGS Environmental Services due to quantifying phenols result.

Metals and Herbicides analyses subcontracted to SGS Perth Environmental, 28 Reid Rd Perth Airport WA, NATA Accreditation Number 2562, Site Number 898, PE100217 R0.

Multiresidue Pest Screen subcontracted to SGS Leeder Consulting, 4-5/18 Redland Drive, Mitcham VIC, NATA Accreditation Number 2562, Site number 14420, M151551.

OCOP:The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

Phenols: The Limit of Reporting (LOR) was raised due to dilution of significantly high concentration of analyte in sample.

SIGNATORIES

Michael Morrison **Organics Supervisor**

> SGS Australia Pty Ltd ABN 44 000 964 278

Member of the SGS Group

Azinphos-methyl

ANALYTICAL REPORT

	\$	Sample Number Sample Matrix Sample Date Sample Name	Water 05 Jul 2015	BE013599.002 Water 04 Jul 2015 DUP 2
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method: AN318	Tested: -	LOR		
Arsenic, As	μg/L	1	1	<1
Cadmium, Cd	μg/L	0.1	<0.1	<0.1
Chromium, Cr	μg/L	1	<1	<1
Copper, Cu	μg/L	1	<1	3
Lead, Pb	μg/L	1	<1	13
Nickel, Ni	μg/L	1	1	3
Zinc, Zn	μg/L	5	38	43
	i: 14/7/2015			I
Mercury	mg/L	0.0001	<0.0001	<0.0001
OC Pesticides in Water Method: AN400/AN420 Tested: 9/7/	/ 2015 μg/L	0.1	<1.0↑	<1.0↑
Hexachlorobenzene (HCB)	μg/L	0.1	<1.0↑	<1.0↑
Beta BHC	μg/L	0.1	<1.0↑	<1.0↑
Lindane (gamma BHC)	μg/L	0.1	<1.0↑	<1.0↑
Delta BHC	μg/L	0.1	<1.0↑	<1.0↑
Heptachlor	μg/L	0.1	<1.0↑	<1.0↑
Aldrin	μg/L	0.1	<1.0↑	<1.0↑
Heptachlor epoxide	μg/L	0.1	<1.0↑	<1.0↑
Isodrin	μg/L	0.1	<1.0↑	<1.0↑
Gamma Chlordane	μg/L	0.1	<1.0↑	<1.0↑
Alpha Chlordane	μg/L	0.1	<1.0↑	<1.0↑
Alpha Endosulfan	μg/L	0.1	<1.0↑	<1.0↑
p,p'-DDE	μg/L	0.1	<1.0↑	<1.0↑
Dieldrin	μg/L	0.1	<1.0↑	<1.0↑
Endrin	μg/L	0.1	<1.0↑	<1.0↑
Beta Endosulfan	μg/L	0.1	<1.0↑	<1.0↑
p,p'-DDD	μg/L	0.1	<1.0↑	<1.01
Endosulfan sulphate	μg/L	0.1	<1.0↑	<1.01
p,p'-DDT Endrin ketone	μg/L μg/L	0.1	<1.0↑ <1.0↑	<1.0↑ <1.0↑
Methoxychlor	μg/L	0.1	<1.0↑	<1.0↑
Mirex	μg/L	0.1	<1.0↑	<1.0↑
Surrogates	ру/с	0.1	1.01	71.01
d14-p-terphenyl (Surrogate)	%	-	100	60
d5-nitrobenzene (Surrogate)	%	-	100	80
2-fluorobiphenyl (Surrogate)	%	-	60	40
Dibromo-DDE (Surrogate)	%	-	-	-
OP Pesticides in Water Method: AN400/AN420 Tested: 9/7/				
Dichloros	μg/L	1	<5↑	<5↑
Dimethoate	μg/L	1	<5↑	<5↑
Diazinon (Dimpylate) Fenitrothion	μg/L μg/l	0.5	<5.0↑	<5.0↑ <2.0↑
rentrothion Malathion	μg/L μg/l	0.2	<2.0↑	<2.0↑
Maiatnion Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L μg/L	0.2	<2.0↑	<2.0↑
Parathion-ethyl (Parathion)	μg/L	0.2	<2.0↑	<2.0↑
Bromophos Ethyl	μg/L	0.2	<2.0↑	<2.0↑
Methidathion	µg/L	0.5	<5.0↑	<5.0↑
Ethion	µg/L	0.2	<2.0↑	<2.0↑
	1.5-		•	

Page 2 of 7 31-July-2015

<2.0↑

<2.0↑

2,4-DCPAA (Surrogate)

ANALYTICAL REPORT

Parameter		Sa	nple Number ample Matrix Sample Date ample Name		BE013599.002 Water 04 Jul 2015 DUP 2
Surrogates Surrogates Surrogates Substitution Substituti	Parameter	Units	LOR		
2. Rusnabphenyl (Surrogate)		2015 (conti	nued)		
District Surrogate % - 100 80	d5-nitrobenzene (Surrogate)	%	-	100	60
Dibromo DDE (Surrogate) %	2-fluorobiphenyl (Surrogate)	%	-	60	40
Penal	d14-p-terphenyl (Surrogate)	%	-	100	80
Phenol	Dibromo-DDE (Surrogate)	%	-	-	-
2-methyl phenol (α-cresoli)	Speciated Phenols in Water Method: AN420 Tested: 9/7/20	15			
2-methyl phenol (o-cresol)	Phenol	μg/L	0.5	10	<0.5
2-chlorophenol μg/L 0.5 14 <501	2-methyl phenol (o-cresol)		0.5	<5.0↑	<0.5
2-chlorophenol µg/L 0.5 14 <501	3/4-methyl phenol (m/p-cresol)	μg/L	1	<1	<1
2.4-dimethylphenol					
2.6-dichlorophenol					
2.4-dichlorophenol μg/L 0.5 < 5001:					
2.4.6-trichorophenol					
2-nitrophenol					
Anitrophenol					
2.4.5-trichlorophenol µg/L 0.5 <5.01					<1
2,3,4,6-tertachlorophenol			0.5	<5.0↑	<0.5
Pentachlorophenol			0.5	<0.5	<0.5
2.4-dinitrophenol μg/L 2 <2 <2 <2 <2 <2 <2 <2					
Surrogates % - 102 78					
Acid Herbicides in Water Method: AN420 Tested: - Ciopyralid µg/L 0.5 <0.5		0/		102	79
4-chlorophenoxy acetic acid (4-CPA) μg/L 1 1 1 1 1 1 1 1 1	Acid Herbicides in Water Method: AN420 Tested: -	70			
Dicamba μg/L 0.5 1.1 7.3 MCPP (Mecoprop) μg/L 0.5 <0.5		μg/L			
MCPP (Mecoprop) μg/L 0.5 <0.5 <0.5 MCPA μg/L 0.5 0.9 12 2,6-D μg/L 0.5 0.6 5.3 Dichlorprop (2,4-DP) μg/L 0.5 <0.5					
MCPA μg/L 0.5 0.9 12 2,6-D μg/L 0.5 0.6 5.3 Dichlorprop (2,4-DP) μg/L 0.5 <0.5					
2,6-D μg/L 0.5 0.6 5.3 Dichlorprop (2,4-DP) μg/L 0.5 <0.5					
Dichlorprop (2,4-DP) μg/L 0.5 <0.5 <0.5 2,4-D μg/L 0.5 190 1200 Bromoxynil μg/L 0.5 <0.5	·				
2,4-D μg/L 0.5 190 1200 Bromoxynil μg/L 0.5 <0.5					
Bromoxynil μg/L 0.5 <0.5 <0.5 Triclopyr μg/L 0.5 1.1 3.4 2,4,6-trichlorophenoxyacetic acid μg/L 0.5 0.7 3.0 2,4,5-TP (Silvex, Fenopop) μg/L 0.5 <0.5					
Triclopyr µg/L 0.5 1.1 3.4 2,4,6-trichlorophenoxyacetic acid µg/L 0.5 0.7 3.0 2,4,5-TP (Silvex, Fenopop) µg/L 0.5 <0.5					
2,4,6-trichlorophenoxyacetic acid µg/L 0.5 0.7 3.0 2,4,5-TP (Silvex, Fenopop) µg/L 0.5 <0.5	•				
2,4,5-TP (Silvex, Fenopop) µg/L 0.5 <0.5					
2,4,5-T μg/L 0.5 <0.5	· · · · ·				
MCPB μg/L 1 <1 <1 Dinoseb (Dinitrobutylphenol) μg/L 0.5 <0.5					
Dinoseb (Dinitrobutylphenol) μg/L 0.5 <0.5 <0.5 Fluroxypyr μg/L 0.5 <0.5					
Fluroxypyr μg/L 0.5 <0.5 <0.5 2,4-DB μg/L 0.5 <0.5					
2,4-DB μg/L 0.5 <0.5					
loxynil μg/L 1 <1 <1	***				
Pictoram μg/L 1 75 91					
	PICIORAM	μg/L	1	75	91

Page 3 of 7 31-July-2015

44

61

ANALYTICAL REPORT

BE013599 R1

	S	nple Number ample Matrix Sample Date ample Name	Water 05 Jul 2015	BE013599.002 Water 04 Jul 2015 DUP 2
Parameter	Units	LOR		
Sample Subcontracted Method: Tested: -				
Sample Subcontracted*	No unit	-	Report Attached	Report Attached

Page 4 of 7 31-July-2015

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

	Parameter	QC	Units	LOR	МВ	DUP %RPD	LCS	MS
ı		Reference					%Recovery	%Recovery
ı	Mercury	LB020409	mg/L	0.0001	0.0000	40%	85%	87%

OC Pesticides in Water Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	МВ	LCS %Recovery
Alpha BHC	LB020347	μg/L	0.1	<0.1	
Hexachlorobenzene (HCB)	LB020347	μg/L	0.1	<0.1	
Beta BHC	LB020347	μg/L	0.1	<0.1	
Lindane (gamma BHC)	LB020347	μg/L	0.1	<0.1	82%
Delta BHC	LB020347	μg/L	0.1	<0.1	
Heptachlor	LB020347	μg/L	0.1	<0.1	60%
Aldrin	LB020347	μg/L	0.1	<0.1	65%
Heptachlor epoxide	LB020347	μg/L	0.1	<0.1	
Isodrin	LB020347	μg/L	0.1	<0.1	73%
Gamma Chlordane	LB020347	μg/L	0.1	<0.1	68%
Alpha Chlordane	LB020347	μg/L	0.1	<0.1	
Alpha Endosulfan	LB020347	μg/L	0.1	<0.1	
p,p'-DDE	LB020347	μg/L	0.1	<0.1	70%
Dieldrin	LB020347	μg/L	0.1	<0.1	68%
Endrin	LB020347	μg/L	0.1	<0.1	70%
Beta Endosulfan	LB020347	μg/L	0.1	<0.1	
p,p'-DDD	LB020347	μg/L	0.1	<0.1	
Endosulfan sulphate	LB020347	μg/L	0.1	<0.1	
p,p'-DDT	LB020347	μg/L	0.1	<0.1	
Endrin ketone	LB020347	μg/L	0.1	<0.1	
Methoxychlor	LB020347	μg/L	0.1	<0.1	
Mirex	LB020347	μg/L	0.1	<0.1	62%

Surrogates

	our ogutoo					
ı	Parameter	QC	Units	LOR	MB	LCS
ı		Reference				%Recovery
ı	d14-p-terphenyl (Surrogate)	LB020347	%	-	68%	66%
ı	d5-nitrobenzene (Surrogate)	LB020347	%	-	74%	64%
ı	2-fluorobiphenyl (Surrogate)	LB020347	%	-	76%	60%

Page 5 of 7 31-July-2015

QC SUMMARY

MB blank results are compared to the Limit of Reporting
LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Water Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Dichlorvos	LB020347	μg/L	1	<1	NA
Dimethoate	LB020347	μg/L	1	<1	NA
Diazinon (Dimpylate)	LB020347	μg/L	0.5	<0.5	76%
Fenitrothion	LB020347	μg/L	0.2	<0.2	
Malathion	LB020347	μg/L	0.2	<0.2	
Chlorpyrifos (Chlorpyrifos Ethyl)	LB020347	μg/L	0.2	<0.2	60%
Parathion-ethyl (Parathion)	LB020347	μg/L	0.2	<0.2	54%
Bromophos Ethyl	LB020347	μg/L	0.2	<0.2	
Methidathion	LB020347	μg/L	0.5	<0.5	66%
Ethion	LB020347	μg/L	0.2	<0.2	
Azinphos-methyl	LB020347	μg/L	0.2	<0.2	

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
d5-nitrobenzene (Surrogate)	LB020347	%	-	68%	66%
2-fluorobiphenyl (Surrogate)	LB020347	%	-	76%	60%
d14-p-terphenyl (Surrogate)	LB020347	%	-	74%	64%

Speciated Phenols in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	МВ	LCS %Recovery
Phenol	LB020347	μg/L	0.5	<0.5	90%
2-methyl phenol (o-cresol)	LB020347	μg/L	0.5	<0.5	75%
3/4-methyl phenol (m/p-cresol)	LB020347	μg/L	1	<1	
2-chlorophenol	LB020347	μg/L	0.5	<0.5	
2,4-dimethylphenol	LB020347	μg/L	0.5	<0.5	
2,6-dichlorophenol	LB020347	μg/L	0.5	<0.5	
2,4-dichlorophenol	LB020347	μg/L	0.5	<0.5	102%
2,4,6-trichlorophenol	LB020347	μg/L	0.5	<0.5	117%
2-nitrophenol	LB020347	μg/L	0.5	<0.5	
4-nitrophenol	LB020347	μg/L	1	<1	
2,4,5-trichlorophenol	LB020347	μg/L	0.5	<0.5	
2,3,4,6-tetrachlorophenol	LB020347	μg/L	0.5	<0.5	
Pentachlorophenol	LB020347	μg/L	0.5	<0.5	125%
2,4-dinitrophenol	LB020347	μg/L	2	<2	

Surrogates

ı	Parameter	QC	Units	LOR	MB	LCS
ı		Reference				%Recovery
ı	2,4,6-Tribromophenol (Surrogate)	LB020347	%	-	81%	110%

Page 6 of 7 31-July-2015

BE013599 R1

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

AN083

Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.

AN311/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN318

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN400

OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods

3510, 3550, 8140 and 8080.)

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique

following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance
The sample was not analysed for this analyte

NVI Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Page 7 of 7 31-July-2015

LEEDER CONSULTING

A.B.N. 44 000 964 278 3 - 5, 18 Redland Drive Mitcham, Vic, 3132 Telephone: (03) 9874 1988 Fax: (03) 9874 1933

Chartered Chemists

21-Jul-2015

REPORT NUMBER: M151551

Site/Client Ref: BE013599

SGS Environmental

59 Bancroft Road Pinkenba QLD 4008

Attention: SRA_REPORTS_BRISBANE

CERTIFICATE OF ANALYSIS

SAMPLES: Two samples were received for analysis

DATE RECEIVED: 9-Jul-2015

DATE COMMENCED: 9-Jul-2015

METHODS: See Attached Results

RESULTS: Please refer to attached pages for results.

Note: Results are based on samples as received at SGS Leeder Consulting's laboratories

REPORTED BY:

Michael Jeddou

m7~

Senior Chemist

NATA Accredited Laboratory Number: 14429

Accredited for compliance with ISO/IEC 17025.

NATA accreditation does not cover the performance of Method(s) - MA-1452; USEPA 8270 Additionals

SGS LEEDER CONSULTING

Report N°: M151551

ANALYTICAL RESULTS

Test Started: 13/07/2015

Test Started: 13/07/2015

Test Started: 13/07/2015

Test Started: 13/07/2015

Matrix: Water

Method: MA-1452 Phenyl Urea Herbicides

Sample units are expressed in mg/L

	Leeder ID	2015016898	2015016899	2015016900
Analyte Name	Client ID Sampled Date	TRIP 1	BE013599.002 DUP 2 4/07/2015	Method
Analyte Name	PQL	5/07/2015	4/07/2015	Blank
Diuron	0.001	0.010	0.009	nd

Matrix: Water

Method: MA-83.WW.01 Nitrogen/Phosphorus Pesticides

Sample units are expressed in mg/L

2015016898 2015016899 2015016900 Leeder ID BE013599.001 BE013599.002 Method **Client ID** TRIP 1 DUP 2 **Sampled Date Analyte Name** 5/07/2015 4/07/2015 PQL Blank 0.001 Atrazine nd nd nd Metolachlor 0.001 0.014 0.014 nd Molinate 0.001 nd nd nd Trifluralin 0.001 nd nd nd Simazine 0.001 nd nd nd

Matrix: Water

Method: MA-78.WW.03 Organophosphate Pesticides

Sample units are expressed in mg/L

	Le	eder ID	2015016898	2015016899	2015016900
Analyte Name	Client ID e Sampled Date PQL		BE013599.001 TRIP 1 5/07/2015	BE013599.002 DUP 2 4/07/2015	Method
raidiyee raine			3,07,2013	1,07,2013	Blank
Chlorpyrifos		0.001	nd	nd	nd
Malathion		0.001	nd	nd	nd

Matrix: Water

Method: USEPA 8270C.WW.ADD.00 Additional SVOCs in water

Sample units are expressed in mg/L

J	Leeder ID	2015016898	2015016899	2015016900
Client ID		BE013599.001 TRIP 1 5/07/2015	BE013599.002 DUP 2	Method
Analyte Name Sam	Sampled Date PQL		4/07/2015	Blank
Diazinon	0.001	nd	nd	nd
Thiobencarb	0.001	nd	nd	nd

Page 2 of 6

LEEDER CONSULTING

Report N°: M151551

ANALYTICAL RESULTS

Matrix: Water

Method: Surrogate Recovery
Sample units are expressed in %

Test Started: 13/07/2015

	Le	eder ID	2015016898	2015016899	2015016900
	C	Client ID	BE013599.001 TRIP 1	BE013599.002 DUP 2	Method
Analyte Name	Sampl	ed Date	5/07/2015	4/07/2015	
		PQL			Blank
Fluorobiphenyl			85	102	108
Fluorophenol			85	95	92
Nitrobenzene-d5			76	89	113
Phenol-d6			85	118	73
p-Terphenyl-d14			83	86	99
2,4,6-Tribromophenol			70	95	89

LEEDER CONSULTING

Report N°: M151551

QA/QC RESULTS

Test Started: 13/07/2015

Test Started: 13/07/2015

Test Started: 13/07/2015

Test Started: 13/07/2015

Matrix: Water

Method: MA-1452 Phenyl Urea Herbicides

Quality Control Results are expressed in Percent Recovery of expected result

 Leeder ID Client ID
 2015016901
 2015016902

 Analyte Name
 Sampled Date PQL
 Spike
 Spike Dup

 Diuron
 97
 97

Matrix: Water

Method: MA-83.WW.01 Nitrogen/Phosphorus Pesticides

Quality Control Results are expressed in Percent Recovery of expected result

L	eeder ID	2015016901	2015016902
	Client ID	Method	Method
Analyte Name Samp	led Date		
	PQL	Spike	Spike Dup
Metolachlor		109	115

Matrix: Water

Method: MA-78.WW.03 Organophosphate Pesticides

Quality Control Results are expressed in Percent Recovery of expected result

	Leeder ID	2015016901	2015016902
	Client ID	Method	Method
Analyte Name Sampled Date			
	PQL	Spike	Spike Dup
Chlorpyrifos		113	108

Matrix: Water

Method: USEPA 8270C.WW.ADD.00 Additional SVOCs in water

Quality Control Results are expressed in Percent Recovery of expected result

	eeder ID Client ID	2015016901 Method	2015016902 Method
Analyte Name Samp	oled Date PQL	Spike	Spike Dup
Diazinon		68	76

S LEEDER CONSULTING

Report N°: M151551

QA/QC RESULTS

Test Started: 13/07/2015

Matrix: Water

Method: Surrogate Recovery

Quality Control Results are expressed in Percent Recovery of expected result

_	eeder ID Client ID	2015016901 Method	2015016902 Method
	Client ID	Wicthod	Wicthod
Analyte Name Samp	led Date		
	PQL	Spike	Spike Dup
Fluorobiphenyl		101	117
Fluorophenol		92	80
Nitrobenzene-d5		99	103
Phenol-d6		87	72
p-Terphenyl-d14		91	95
2,4,6-Tribromophenol		84	91

Report N°: M151551

QUALIFIERS / NOTES FOR REPORTED RESULTS

PQL	Practical Quantitation Limit
nd	Not Detected – The analyte was not detected above the reported PQL.
is	Insufficient Sample to perform this analysis.
Т	Tentative identification based on computer library search of mass spectra.
NC	Not calculated and/or Results below PQL
NV	No Vacuum, Canister received above standard atmospheric pressure
nr	Not Requested for analysis.
R	Rejected Result – results for this analysis failed QC checks.
SQ	Semi-Quantitative result – quantitation based on a generic response factor for this class of analyte.
IM	Inappropriate method of analysis for this compound
U	Unable to provide Quality Control data — high levels of compounds in sample interfered with analysis of QC results.
UF	Unable to provide Quality Control data- Surrogates failed QC checks due to sample matrix effects
L	Analyte detected at a level above the linear response of calibration curve.
E	Estimated result. NATA accreditation does not cover estimated results.
C1	These compounds co-elute.
	Parameter N ot Determined
СТ	Elevated concentration. Results reported from carbon tube analysis
**	Sample shows non-petroleum hydrocarbon profile

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and $acc \\cite{s}$ sible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents

This report must not be reproduced, except in full.

APPENDIX ONE.

CHAIN OF CUSTODY DOCUMENT

			CH/	CHAIN O	I C	JSTC	<u>Σ</u>	ANA	-XSI	S RE(F CUSTODY & ANALYSIS REQUEST				
n	252	Lab ID Number:					(please	(please quote on all correspondence)	all con	epuodse.	nce)		<u> </u>	Page,	e_1 of1_
		Company Name:	SGS E	SGS Environmental Services	nental	Service	s s			Project	Project Name/No:		BE013599		
		Address:	59 Bar	59 Bancroft Rd	-					urchase	Purchase Order No:	D: TBA			
59 Bancroft Rd	SGS Environmental Services 59 Bancroft Rd		Pinken	Pinkenba QLD	4008				Res	ults Req	Results Required Date:	-	16/7/15		
PINKENBA QLD 4008	2 4008										Telephone:		(07)3622 4700	Fax:	×
		Contact Name:	David	David Brennar	_								ifer.wain@sgs.co	om, Sand	Jennifer.wain@sgs.com, <u>Sandhya.prasad@sgs.com</u>
		Laboratory Quotation No:								Email	Email Results to:		au.environmental.brisbane@sgs.com	ne@sgs.c	com
			Tick as	S			ANA	ANALYSIS REQUESTED.	QUES	II .	PECIFY 8	TICKA	SPECIFY & TICK AS APPROPRIATE		
		Samulia	Appropriate	ate											
SGS ID	Client Sample ID	Date/Til me me me solid Sample	Liquid Sample	Gas/Air Sample	PRESERVATIVE	NO. OF ITEMS	Multiresidue Pesticide Screen*								Notes/Guidelines/LOR/ Special instructions
BE013599.001	TRIP 1	5/7/15	×			2 ×								*sir	*simazine, diuron, atrazine,
BE013599.002	DUP 2	4/7/15	×			2 X								Mol	Molinate, metolachlor,
												:		Mal	Malathion, diazinon,
															Thiobencarb,
														당	chloropyririfos, trifluralin
														Sar	Same as BE009134
			-												
Relinquished By: DB)B	Date/Time:8/7/15	15				Rece	Received By: Bough	Boses	12/12	insur		Date/Time: 9	51/1/2	m@:@
Relinquished By:		Date/Time:					Rece	Received By:					Date/Time:		
Samples Intact: (Yes / No	Ces/ No	Temperature:	Ambient / Chilled / NA	t/Chil	led / N	A	Sam	ole Secu	rity Se	aled: अ	Sample Security Sealed: 🎺 / No				
Comments / Subcontracting details:	ontracting details:												Quarantine:	Yes /	W.S.
i.e. samples subcc	i.e. samples subconfracted to SGS Sydney due to TAT requested	s to TAT requester	700										Hazards: e.g. may contain Asbesfos	may con	itain Asbestos

From: Brennan, David (Brisbane)
Sent: Thursday, 9 July 2015 11:09 AM
To: AU.SampleReceipt.Mitcham (Melbourne)

Subject: RE: BE013599 (M151551)

Hi Benedict

Yes please

Thanks

David Brennan

Environmental ServicesSample Receipt Supervisor

Phone: +61 (0)7 3622 4750

To provide your valuable feedback & help us to improve, please click the image below (Survey open from start July to the end of September 2015).

DONATE \$5

For each completed survey, SGS will donate \$5 to Red Cross

From: AU.SampleReceipt.Mitcham (Melbourne)

Sent: Thursday, 9 July 2015 11:08 AM

To: Brennan, David (Brisbane) **Subject:** BE013599 (M151551)

Hi David,

We have received your samples.

On the COC (see attached) you have written chloropyririfos.

Did you mean chloropyrifos?

Thanks.

Benedict Robinson

Environmental Services

Sample Reception

SGS LEEDER CONSULTING Melbourne Office Unit 5 /18 Redland Drive Mitcham VIC 3132, Australia

Phone +61 (0)3 9874 1988 Fax: +61 (0)3 9874 1933

Email: <u>benedict.robinson@sgs.com</u>

Web: <u>www.au.sgs.com</u>

SAMPLE RECEIPT ADVICE

CLIENT DETAILS LABORATORY DETAILS

MICHAEL TISDALL & Steven Termont-Schenck **Andrew Tomlins** Contact Manager

Geoenvironmental Consultants SGS Brisbane Environmental Client Laboratory

> 81 Bishop Road Address 59 Bancroft Road BEACHMERE QLD 4510

PINKENBA QLD 4008

07 3367 2266 +61 7 3622 4700 Telephone Telephone 61 07 33672377 +61 7 3622 4799 Facsimile Facsimile

mtisdall@bigpond.com au.environmental.brisbane@sgs.com Email **Email**

Narangba Q Event 11 EHP Binary Site Project Samples Received Tue 7/7/2015 5010/7_GW Order Number Report Due Thu 16/7/2015 BF013599 SGS Reference

2 Samples

SUBMISSION DETAILS

Address

This is to confirm that 2 samples were received on Tuesday 7/7/2015. Results are expected to be ready by Thursday 16/7/2015. Please quote SGS reference BE013599 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix 2 Water Type of documentation received COC Date documentation received 8/7/2015 Samples received in good order Yes Samples received without headspace Sample temperature upon receipt 17°C Yes Turnaround time requested Sample container provider ALS Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Icebricks Samples clearly labelled Yes Complete documentation received Number of eskies/boxes received Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS , all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE RECEIPT ADVICE

CLIENT DETAILS _ Client Geoenvironmental Consultants Project Narangba Q Event 11 EHP Binary Site

				LYSIS	

No.	Sample ID	Acid Herbicides in Water	Mercury (dissolved) in Water	OC Pesticides in Water	OP Pesticides in Water	Sample Subcontracted	Speciated Phenols in Water	Trace Metals (Dissolved) in Water by ICPMS
001	TRIP 1	20	1	26	15	1	15	7
002	DUP 2	20	1	26	15	1	15	7

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

9/07/2015 Page 2 of 2

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

source: CM4540MFP_20150708111812.pdf page: 1 SGS Ref: BE013599_COC

Page 1 of 1

Chain of Custody Form

No.: COC5010/7.GW

BE013599

From: GeoEnvironmental Consultants P/L S G S Environmental Services To: GeoEnvironmental Consultants 129 Outlook Cres 59 Bancroft Road PINKENBA, OLD 4008 BARDON, OLD 4065 **Quotation: 3TS5A4** Ph-3367 2266 Contact: Steve Termont-Schenk / Michael Site Name: EHP Binary Site Contact: AU.Environmental.Brisbane@sgs.com Tisdall Ph: 0418 883 152 E: tsdownunda@gmail.com **Location Code:** Narangba, O Event: 11 (07)3622 4700 Fax: mtisdall@bigpond.com 0407 178 802 Project Manager. Steve Termont-Schenk Order No.: 5010/7 GW **Turnaround Time.:** 48hr 3day 5day 7day+ Lab Sample Date Collected Sample Type Analyses Requested Preservation No. of Comments No. No. Method Containers Soil Water Ice Acid Glass Plastic DisMetals **PhenoxyAcid** OC/OP Other (As, Cd, Cr, Herbicides & tests **Pesticides** Phenols Cu. Pb. Ni. (specifiv) LLmulti-None Zn, Hg) or notes residue pest screen TRIP 1 5/07/2015 X X X 4 X X X X 1 DUP 2 4/07/2015 X X X X X X X 4 1 SGS Brisbane Environmental BE013599 COC Received: 07-Jul-2015 Relinquished by: Peter McGurgan Date: 7 - 7 - 15 Palaugue. Dropped Off Received by: Date: 7-7-15 Date: Time: 12.50 0413 258 403 Time: 12-50 Time:

^{*} Note: Detection Limits -.

SGS Environmental Brisbane Bottle Map

Job No. ———					Eskies	s/Parc	els:		ı	ce / Je	e brig	ks		Tem	ıp:	17		He	ead Sp	oace:	Y/N		SGS
Sample No.	P 125mL UP (nutrients)	P 250 mL UP (Gen Chem)	P 500 mL UP (Gen Chem)	P 1L UP (Gen Chem)	P 125 mL Acid Washed (metals)	7C P 425 mL Acid Washed (FIELD FILTERED)	P 500 mL Zn(CH3COO)2 + NaOH (sulphide)	P 250 mL H2 SO4 (phenols / COD)	P 250 mL WHITE NaOH (cyanide)	P 250 mL WHITE UP (Algae)	G 2.5 L CuSO4 (Dust)	G 1L H2SO4 (TOG)	G 500 mL UP (Organics)	G200 mL UP (Organics)	G100 mL UP (TOC/Organics)	P 500 mL Sterile Na2S2O3 (bacto)	P 200 mL Sterile Na2S2O3 (bacto)	G 200 mL C6H8O6 (THM)	G 40 mL Na2S2O3 (TRH/BTEX)	G 125 / 250 mL Jar UP (soil)	Sample Matrix	Lab Bottles Supplied	
1,2						1							2		2						W	7	
								\dashv															
								\dashv															
												32.41											
Comments:																							

Suite ANALYSIS METHOD Units CONTAINERS UN CL02 8 Metals As, Cd, Cr, Cu, Ni, Pb, Zn, Hg 1999/2011 / 1999/2011 / 1999/2011 / 1999/2011 / 1999/2000 Various 125ml Acid 30 SV03 OC/OP Pesticides / ANZECC / 2000 Various 200ml Amber / 72 72 *sub Phenols - speciated USEPA 8270 / 2.0 US- ug/L / 1.0 Included 72 *sub Phenoxy Acid Herbicides USEPA 8151 / 1.0 0.5- ug/L / 1.0 Included 72 *sub Multiresidue Pesticide Screen - Simazine, Diuron, Atrazine, Malathion, Diazinon, Trifluralin) NEPM 1999 / ANZECC / 1.0 VANZECC / 1.0 UG/L / 1.1 Amber Glass 403 Administration Fee (per job) Administration Fee (per job) Administration Fee (per job) Administration Fee (per job) 30 Disposal Fee Administration Fee <td< th=""><th></th><th></th><th></th><th>Water</th><th></th><th></th><th></th><th></th><th></th></td<>				Water					
NEPM	Suite	ANALYSIS	METHOD	nn	its	CONTAINERS PER SAMPLE	UNIT	QTY	TOTAL (AUD)
r, Cu, Ni, 1999/2011 / various Washed Plastic 2000 NEPM 1999 / ANZECC 2000 NEPM 1999 / ANZECC Various Glass d USEPA 8270 0.5- ug/L Included Glass ide Screen Atrazine, NEPM 1999 / ANZECC 0.01 ug/L 1L Amber Glass / ANZECC 0.01 ug/L 1L Amber Glass / Opyririfos, 2000			Te	st Suite	S				
NEPM 1999	CL02	8 Metals As, Cd, Cr, Cu, Ni, Pb, Zn, Hg	NEPM 1999/2011 / ANZECC 2000	varie	snc	125ml Acid Washed Plastic	30.00	27	810.00
USEPA 8270 0.5- ug/L Included	SV03	OC/OP Pesticides	NEPM 1999 / ANZECC 2000	varic	snc	200ml Amber Glass	72.00	27	1,944.00
d USEPA 8270 0.5- ug/L Included 2.00 ug/L 200ml Amber Glass ide Screen Atrazine, Atrazine, Anzecc 0.01 ug/L 1L Amber Glass opyririfos, 2000			Individ	lual Ana	alysis				
icides USEPA 8151 0.5- ug/L 200ml Amber Glass ide Screen Atrazine, NEPM 1999 10r, 2000 2000 Opyririfos, Other Charges		Phenols - speciated	USEPA 8270	0.5-	ng/L	Included	72.00	27	1,944.00
ide Screen Atrazine, Anzecc 0.01 ug/L 1L Amber Glass opyririfos, Other Charges	qns,	Phenoxy Acid Herbicides	USEPA 8151	0.5-	ng/L	200ml Amber Glass	72.00	27	1,944.00
Other Charges	qns _{**}	Multiresidue Pesticide Screen - Simazine, Diuron, Atrazine, Molinate, Metolachlor, Malathion, Diazinon, Thiobencarb, Chloropyririfos,	NEPM 1999 / ANZECC 2000		ng/L		403.00	27	10,881.00
Other Charges	Sub-To	tal							17,523.00
			Othe	r Charg	sel				
	Adminis	tration Fee (per job)					30	-	30.00
SUB TOTAL Goods and Service Tax TOTAL PRICE	Disposs	al Fee					-	27	27.00
Goods and Service Tax TOTAL PRICE	SUB TO	DTAL							17,580.00
TOTAL PRICE	Goods	and Service Tax						10%	1,758.00
	TOTAL	PRICE							19,338.00

^{*}Sub - Analysis will be subcontracted to SGS-Environmental in Perth

^{**}Sub - Analysis will be subcontracted to SGS-Leeder.

APPENDIX B QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES

APPENDIX B

Q1 QUALITY ASSURANCE

The following procedures were utilized to ensure the integrity of the data collected during the assessment.

O1.1 Sample Collection and Containers

All samples were collected by a **GeoEnvironmental Consultants** engineer or scientist specifically trained in hazardous waste field investigation techniques and health and safety procedures.

Soil sample collection (if applicable) included:

- Sample collection equipment is inspected by the **GeoEnvironmental Consultants** engineer / scientist prior to commencement of fieldwork to ensure equipment cleanliness and adequacy. Equipment is inspected for oil leaks or other potential sources of cross contamination;
- Soil samples are collected directly from the auger or ground;
- Selection by the engineer/scientist of depth(s) to be sampled;
- Sample handling is conducted in a work area that is wiped clean for each sampling event and kept clear of mess and potential cross contamination sources;
- The engineer/scientist wears a new pair of disposable nitrile gloves for each sample collection event; and
- Immediate transfer of soil by gloved hand and/or decontaminated sampling equipment to prelabelled, 250 ml laboratory supplied glass jars with Teflon lid inserts. Jars are filled to ensure sufficient sample is provided for laboratory purposes. The container lip is cleaned if necessary before firmly screwing on the container lid. A clean lip is required to ensure that the Teflon lid insert is not damaged and that volatile and semi-volatile compounds do not escape from the container prior to analysis.

Groundwater sample collection included:

- Gauging depth to water (DTW) in each monitoring well prior to development, if developed, using a Depth to Water Gauge with ± 3mm accuracy. The probe and tape was decontaminated between gauging events;
- Utilization of one-use, disposable bailers for each individual monitoring well. New bailer cord is used for each well. The disposable bailers were also used for well purging along with a pump on selected wells;
- Sample collection equipment is inspected by the **GeoEnvironmental Consultants** engineer / scientist prior to commencement of fieldwork to ensure equipment cleanliness and adequacy;
- The engineer/scientist wears a new pair of disposable nitrile gloves for each sample collection event;
- Utilization of the same disposable bailer to collect samples for field testing and laboratory analysis; and
- Immediate transfer of water from the bailer to pre-labeled, laboratory supplied glass bottles and vials and plastic bottles, as required for the particular analysis. The containers for laboratory analysis are filled to form a meniscus with no headspace prior to firmly sealing with lids with Teflon inserts.

Q1.2 Decontamination

Soil Sampling.

All field sampling equipment was decontaminated prior to use and between samples to prevent cross contamination. Equipment included the "split spoon" samplers from the drill rig and trowels, bowls, knives etc used by the engineer/scientist to transfer the sample to containers. Decontamination of equipment involved the following processes:

- Scrub in clean potable water to remove gross contamination;
- Scrub in a solution of Extran MA03, (phosphate free alkaline cleaner) in clean potable and/or deionised water;
- Rinse in clean potable and/or deionised water; and
- Air dry.

Between boreholes the hollow stem augers are removed to a designated cleaning area and all attached soil is removed using a high pressure water spray.

Groundwater Sampling.

The dedicated disposable bailer in each well was rinsed with demineralized water prior to sampling. For this monitoring event there was no requirement to further decontaminate bailer sampling equipment as the dedicated bailers were used to transfer samples directly into laboratory prepared containers. The pump when used for purging was subject to decontamination procedures.

Q1.3 Field Records and Sample Identification

Good, accurate documentation and record keeping at the time of fieldwork performance is considered critical for project success. Detailed field notes are recorded both on drill log sheets and field note books. Records include but are not limited to:

- Name and address of site;
- Identification of field personnel
- Identification of sampling locations
- Date of sample collection
- Method of sample collection
- Field measurements made e.g. conductivity, pH
- Depth of first groundwater occurrence
- Depth of static groundwater elevation
- Depth to bottom of borehole, screen/casing
- Number and volume of samples collected
- Survey data as applicable

All samples are identified with a unique sample number, the project number and date of collection. Sample identification details are also recorded on the drill log sheets and Chain of Custody documents. Sample containers are placed into zip lock plastic bags or wrapped in plastic to protect the sample label from damage.

Q1.4 Sample Transport

All samples to be transported to the laboratory were packed securely in an Esky containing ice. Samples were transported under Chain of Custody procedures from the site to the laboratory.

Sample receipt advice from the laboratory indicated whether all sample containers arrived intact. The laboratory also advises if there are any irregularities between sample containers / numbers supplied and Chain of Custody requests.

Q1.5 Instrument Calibration

Instruments used to conduct the field investigations and measurements were all calibrated in accordance with the manufacturers recommended procedures.

Q2 QUALITY CONTROL

In order to assess the accuracy and precision of the analytical data obtained, the following quality control samples are collected:

Q2.1 Field Duplicates and Triplicates

Field duplicates are a second sample taken from the same position as the first (or a split sample). One field duplicate is typically collected for each 10 (or fewer) samples. A lesser duplicate to field sample ratio may be acceptable under certain site conditions such as consistent lack of contamination and consistent ground conditions.

The field duplicate is analysed to check for consistency of laboratory performance and the variability of the contaminants in the sample. Field triplicate samples, when collected, are analysed by an alternate laboratory to assess the accuracy and consistency of the primary laboratory. Field duplicate and triplicate results are used to assess the precision of the whole process including sampling, sample preservation and analysis. Two field duplicates were gathered during this monitoring event. DUP1 from well MW19 was analysed by the primary laboratory, ALS and DUP2 from well MW23 was analysed by the alternate laboratory, SGS. A single field triplicate sample, TRIP1 from well MW19 was analysed by the alternate laboratory, SGS.

Q2.2 Equipment (Rinsate) Blanks

Equipment blanks are deionised water solutions that are transported to the site, opened in the field, and poured over or through the sample collection device, collected in a sample container, and returned to the laboratory. Equipment blanks are used to check the cleanliness of the sampling device and to confirm the quality of field decontamination procedures.

One equipment blank is typically collected per sampling day or event. One equipment blank was collected for this monitoring event, Sample No. RIN1 was collected prior to gathering the sample from well Backg'nd and was analysed by the primary laboratory, ALS. All analytical results were less than reportable by the laboratory in Sample No. RIN1 except for copper which was measured at a concentration of 0.006mg/L which exceeds the adopted guideline for copper. The laboratory was requested to check this analysis and they confirmed the result by reanalysis of the sample. This detection indicates that a level of copper contamination may have been present on the dedicated bailer used in well Backg'nd. Review of the copper results from this monitoring event indicate a copper

concentration which was lower than measured in May 2013 and less than the maximum level recorded in the well in May 2012, 0.010mg/L. On the basis of this review we concluded this detection of copper did not have a meaningful impact on the quality of the data received.

Q2.3 Field Blanks

Field blanks are deionised water that is taken to the sampling site and poured into the sample container prior to sample collection. The sample container remains open throughout the collection of samples and is then sealed and returned to the laboratory with the other samples.

Field blanks are typically collected when requested by the client or when warranted by specific site conditions and/or contaminants of concern. Field blanks perform a similar function to *Trip Blanks*, which are pre-prepared samples used to measure the incidental or accidental contamination of samples by volatile organic compounds (VOCs) during transport, field work and storage. Trip blanks are usually prepared by the laboratory using containers which are filled with VOC free water. These pre-prepared samples are then handled in the same manner as regular VOC sample collection containers.

Q2.4 Matrix Spike Samples

Matrix spikes are samples prepared in the laboratory by spiking an aliquot of a field sample with known concentrations of specific analytes. The matrix spike is then analysed and the results are used to assess the effects of the sample matrix on the accuracy of the analyses.

Accuracy is assessed by calculation of *percent recovery*, where:

Percent recovery (PR) = $X/T \times 100\%$

Where X = the observed value of measurement T = "true" value

ALS specifies acceptable spike recoveries as follows:

- 86 127 % for metals.
- 16 138 % for OC/OP pesticides.
- 24 132 % for phenolics.
- 65 147 % for Phenoxyacetic Acid Herbicides.
- 65 130 % for Metolachlor and other multi-residue pesticides.

Q2.5 Laboratory Control samples

Laboratory Control Samples (or Quality Control Check Samples) are samples prepared within the laboratory by spiking an aliquot of an appropriate clean matrix reagent with known concentrations of specific analytes. The check sample is then analysed and the results are used to assess the laboratory performance on sample preservation and analysis procedure.

Accuracy is assessed by calculation of percent recovery, where:

Percent recovery (PR) = $X/T \times 100\%$

Where X = the observed value of measurement

T = "true" value

ALS routinely report these results in the project specific Quality Control Report.

Q2.6 Relative Percentage Difference (RPD)

The relative percentage difference or RPD of each set of duplicate and triplicate samples is calculated and presented on Table Nos. 2 and 3 to assess overall precision, where:

RPD = (D1 - D2) x 100%

(D1 + D2)/2

where D1 = Sample concentration

D2 = Duplicate (or triplicate) sample concentration