PUBLIC RELEASE DRAFT - NOT GOVERNMENT POLICY

Refer to DES website for groundwater technical report and information on making a submission Refer to accompanying DES draft groundwater technical report for details on data, methods, analyses, results

Environmental Protection (Water and Wetland Biodiversity) Policy 2019

South East Queensland

Groundwater Environmental Values and Water Quality Objectives

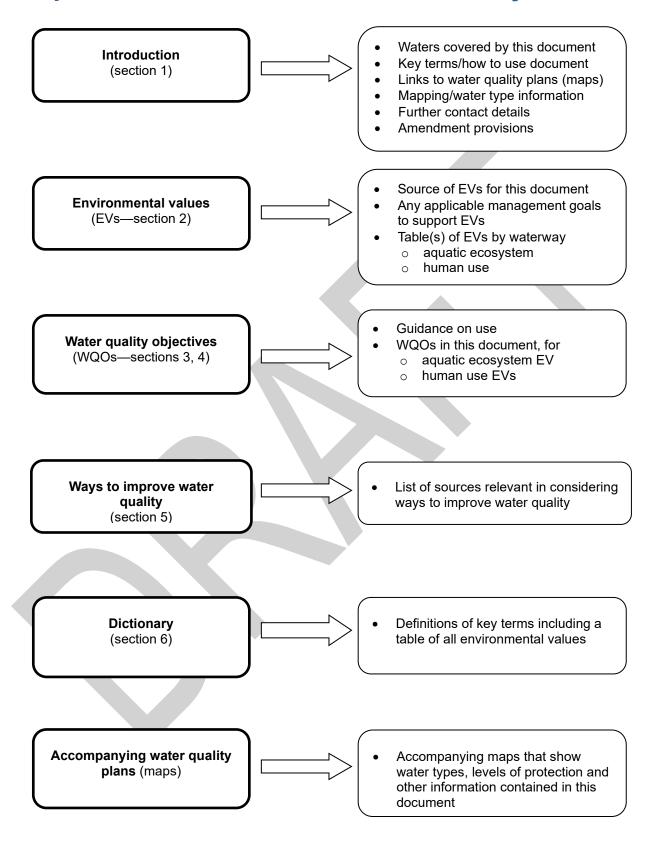
All groundwaters of basins 141-146 and part Basin 140

© State of Queensland, 2023

The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 Australia (CC BY) licence.

Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms.

You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication.


For more information on this licence, visit http://creativecommons.org/licenses/by/4.0/au/deed.en

If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470.

This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email library@des.qld.gov.au.

October 2023

Main parts of this document and what they contain

Contents

Main	parts of this document and what they contain	i
List	of tables	ii
1	Introduction	1
1.1	Purpose	1
1.2	Queensland waters to which this document applies	1
1.3	Guidance on using this document	
1.4	Information about mapped areas and boundaries	
1.5	Water types and basis for boundaries	
1.6	Matters for amendment	
2	Environmental values and management goals	
2.1	Environmental values	
2.2	Management goals to support environmental values	
3	Water quality objectives to protect aquatic ecosystem environmental values	
3.1	Aquatic ecosystem water quality objectives	
3.2	Comparison of test data with water quality objectives	
3.3	State planning policy – (state interest – water quality)	
4	Water quality objectives for human use environmental values (EVs)	
4.1	Human use EVs water quality objectives	
4.2	Aquaculture EV water quality objectives	
4.3	Drinking water EV water quality objectives	
5	Ways to improve water quality	
6	Dictionary	62
Lis	st of tables	
Table	e 1 Aquifer classes and chemistry zones summary (South East Queensland)	5
Table	e 2 Environmental values: South East Queensland groundwaters	8
Table	e 3 Aquatic ecosystem water quality objectives – groundwaters (by aquifer class and chemistry zone)	23
Table	e 4 Human use EVs water quality objectives	52
Table	e 5 Aquaculture EV: General water quality objectives for tropical aquaculture	56
Table	e 6 Aquaculture EV: Water quality objectives for optimal growth of particular freshwater species	57
Table	e 7 Aquaculture EV: Water quality objectives for optimal growth of particular marine species	58
Table	e 8 Drinking water EV: Priority water quality objectives for groundwater drinking water supply before treatr (except where noted: refer ADWG and relevant legislation for post-treatment)	
Table	e 9 Environmental values that can be identified for protection	63

1 Introduction

This document is made pursuant to the provisions of the Environmental Protection (Water and Wetland Biodiversity) Policy 2019 (EPP [Water and Wetland Biodiversity]), which is subordinate legislation under the *Environmental Protection Act 1994*. The EPP (Water and Wetland Biodiversity) provides a framework for:

- identifying environmental values (EVs) for Queensland waters and wetlands
- identifying the management intent for waters
- · identifying management goals for waters
- stating water quality objectives (WQOs) to protect or enhance EVs for waters (WQOs are long-term goals for receiving waters, not individual point source emission objectives.)
- including the identified EVs, management goals and WQOs for waters under Schedule 1 of the EPP (Water and Wetland Biodiversity).

This document contains EVs and WQOs for South East Queensland groundwaters, and is listed under schedule 1 of the EPP (Water and Wetland Biodiversity). For information on wetland EVs, refer to section 7 of the EPP (Water and Wetland Biodiversity). The accompanying plans (refer below for details) identify the EVs, water type and management intent for the different waters covered by this document.

1.1 Purpose

The purpose of this document and accompanying plans is to identify locally relevant environmental values (EVs) and water quality objectives (WQOs) for South East Queensland groundwaters, pursuant to section 12 of the EPP (Water and Wetland Biodiversity) for inclusion in Schedule 1 of the EPP (Water and Wetland Biodiversity). EVs and WQOs are used to help set development conditions, influence local government planning schemes, and underpin report card grades for ecosystem health monitoring programs. Aquatic ecosystem water quality objectives have, where possible, been established using local data, and present a truer picture of the physico-chemical water quality of local groundwaters than national and state water quality guidelines. The adoption of local water quality monitoring data in deriving WQOs ensures the values the community holds for its waterways can be maintained and improved.

1.2 Queensland waters to which this document applies

This document applies to groundwaters of South East Queensland (basin 140 (part) and all basins 141 - 146¹), as indicated in the accompanying plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409². Queensland groundwaters covered by this document include alluvial, fractured rock, Cainozoic deposits including sediments overlying the Great Artesian Basin (GAB), lower GAB and earlier basins partially underlying the GAB. (Refer section 1.5 for more details on water types.) Groundwaters extending under coastal and marine waters have not been included in the relevant mapping or analyses, as bore and water chemistry data are not available for these waters.

For surface waters of South East Queensland (including surface fresh, estuarine and coastal waters), refer to separate documents and mapping under schedule 1 of the EPP (Water and Wetland Biodiversity), available from the Department's website.

¹ Australia's River Basins 1997—Product User Guide. Published by Geoscience Australia. Canberra, ACT (3rd edition, 2004).

² This document and the accompanying plans are available from the department's website. The boundaries in the accompanying plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409 are indicative only. Schedule outlines, EVs, water types and aquatic ecosystem management intent (level of protection) depicted in the accompanying plans are available on Queensland Globe (qldglobe), and the GIS datasets can be downloaded from the Queensland Spatial Catalogue (QSpatial). For further information, email the department at epa.ev@des.qld.gov.au.

1.3 Guidance on using this document

1.3.1 Key terms (refer to dictionary for additional terms)

ADWG means the Australian Drinking Water Guidelines, published on the National Health and Medical Research Council (NHMRC) website.

ANZG (previously ANZECC) means the Australian and New Zealand Guidelines for Fresh and Marine Water Quality, published on the Australian Government's Water Quality Australia website.

Environmental values (EVs) for water means under section 6 of the EPP (Water and Wetland Biodiversity) the EVs specified in the EVs table of this document (Table 2) for the corresponding water, or, for other waters, the EVs stated in subsection 6(2) of the EPP (Water and Wetland Biodiversity). EVs for water are the qualities of water that make it suitable for supporting aquatic ecosystems and human water uses. These EVs need to be protected from the effects of habitat alteration, waste releases, contaminated runoff and changed flows to ensure healthy aquatic ecosystems and waterways that are safe for community use. Particular waters may have different EVs. Further details are provided in the dictionary.

Level of protection for a water (aquatic ecosystem EV) means the level of aquatic ecosystem condition specified for waters in the Aquatic Ecosystem water quality objectives tables of this document that the corresponding WQOs for that water are intended to achieve (refer to management intent definition below for further information).

Management goal means the goal/s (if any) stated in section 2.2 of this document to support the EVs for waters identified in the EVs tables.

Management intent for a water (aquatic ecosystem EV) is defined in s.15 of the EPP (Water and Wetland Biodiversity). It is the management intent for the waters that the decision to release waste water or contaminant to waters must ensure that:

- for high ecological value (HEV) waters—the measures for the indicators for all EVs of water are maintained;
- for slightly disturbed (SD) waters—the measures for the slightly modified physical or chemical indicators are
 progressively improved to achieve the water quality objectives for high ecological value water;
- for moderately disturbed (MD) waters:
 - o if the measures for indicators of the EVs achieve the water quality objectives for the water—the measures for the indicators are maintained at levels that achieve the water quality objectives for the water, or
 - o if the measures for indicators of the EVs do not achieve the water quality objectives for the water—the measures for indicators of the EVs are improved to achieve the water quality objectives for the water;
- for highly disturbed (HD) waters—the measures for the indicators of all EVs are progressively improved to achieve the water quality objectives for the water.

QWQG means the Queensland Water Quality Guidelines, published on the Department's website.

Water quality guidelines means under section 8 of the EPP (Water and Wetland Biodiversity), numerical concentration levels or statements for indicators that protect a stated environmental value. Under the EVs setting process contained in the EPP (Water and Wetland Biodiversity), water quality guidelines are used as an input to the development of WQOs.

Water quality indicator (for an EV) means under section 8 of the EPP (Water and Wetland Biodiversity), a property that is able to be measured or decided in a quantitative way. Examples of water quality indicators include physical indicators (e.g. temperature), chemical indicators (e.g. nitrogen, phosphorus, metals), and biological indicators (e.g. macroinvertebrates, seagrass, fish).

Water quality objectives (WQOs) means under section 11 of the EPP (Water and Wetland Biodiversity), the WQOs specified in tables of this document to support the corresponding EVs for waters identified in the EVs table.

WQOs are long-term goals for water quality management. They are numerical concentration levels or narrative statements of indicators established for receiving waters to support and protect the stated EVs for those waters. Water quality objectives are not individual point source emission objectives, but the receiving water quality objectives.

WQOs are derived from scientific criteria or water quality guidelines but may be modified by consideration of economic and social impacts of protecting the EVs for the waters.

Examples of WQOs for the aquatic ecosystem EV (which should not be directly adopted for use) include:

- electrical conductivity less than 500 microsiemens per centimetre (µS/cm)
- pH between 6.5 and 8.4
- calcium less than 50 milligrams per litre (mg/L)

Where more than one EV applies to a given water, the most stringent WQO for each water quality indicator applies, which will then protect all identified EVs.

Water type means groupings of waters with similar characteristics, as shown in the accompanying plans. This document is focussed on groundwaters, which have been classified into aquifer classes and chemistry zones within each aquifer class, as defined below, and summarised in Table 1. EVs and WQOs are provided for chemistry zones as shown in the accompanying tables and plans.

- Aquifer class: a classification system for major aquifer types, including division of large systems such as the GAB, to avoid difficulties in mapping overlapping units. The aquifer types occurring in Queensland have been subdivided into nine major classes for mapping purposes. Six of these classes occur in the South East Queensland region. Each aquifer class is subdivided into chemistry zones, with boundaries mapped around distributions of similar water chemistry and a consistent suite of aquifers (refer Table 1)
- Chemistry zone: a section of an aquifer class where the baseline water chemistry is reasonably consistent, and the bores access one or more major aquifers or other geological formations which are related in space, time and origin (refer Table 1). A chemistry zone may contain more than one aquifer, as well as other geological formations (e.g. aquitards) from the same aquifer class, but the aquifers will generally be closely related. Chemistry zones may extend across (under) surface water basin boundaries.

More details on groundwater water types are provided in section 1.5.

1.3.2 Use of this document

Section 2 lists the identified EVs for protection for particular waters. EVs are mapped in the accompanying plans. The aquatic ecosystem EV is a default applying to all Queensland waters. Reference to tables in sections 3–4 provides the corresponding WQOs to protect the aquatic ecosystem EV, and human use EVs.

Where more than one EV applies to a given water, the adoption of the most stringent WQO for the identified EVs applies to each water quality indicator in order to protect all identified EVs.

This document also refers to a number of guidelines, codes and other reference sources on water quality. In particular, the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) and the QWQG provide more detailed information on water types, water quality indicators, derivation of local water quality guidelines, application during flood events, monitoring, and other matters.

1.4 Information about mapped areas and boundaries

The boundaries in the accompanying plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409 are indicative only. Schedule outlines, EVs, water types and aquatic ecosystem management intent (level of protection) depicted in the accompanying plans are available on Queensland Globe (qldglobe), and the GIS datasets can be downloaded from the Queensland Spatial Catalogue (QSpatial). For further information, email the department at epa.ev@des.qld.gov.au.

1.5 Water types and basis for boundaries

1.5.1 Water types

Water types are groupings of waters with similar characteristics. This document is focussed on groundwaters, which have been classified into aquifer classes and chemistry zones within each aquifer class, as defined in section 1.3 (water type) above and summarised in Table 1. EVs and WQOs are provided for chemistry zones as shown in the accompanying tables and plans.

1.5.2 Water type boundaries

The boundaries of different groundwater aquifer classes and chemistry zones have been mapped using relevant attributes, including:

- · geographic coordinates
- boundaries based on technical investigations

- water quality chemistry
- lithology
- · aquifer depth

Boundaries are shown on the accompanying plans. The boundaries of water types may be confirmed or revised by site investigations.

1.6 Matters for amendment

Amendments of the following type may be made to this schedule 1 document (and accompanying plans) for the purposes of replacement under section 13(2)(b) of the EPP (Water and Wetland Biodiversity):

- changes to EVs
- · changes to management goals
- changes to WQOs
- changes to management intent (level of protection) categories
- changes to waterway or water type boundaries/descriptions
- updates to information/data sources, websites and email contact details, agency/departmental names, other institutional names, references.

Table 1 Aquifer classes and chemistry zones summary (South East Queensland)

Aquifer class	Description, including component chemistry zones ^{1, 2}	GWQ plan reference
Alluvium	Recent alluvium and other recent deposits (e.g. sand dunes, deltas) divided into 23 chemistry zones based on water quality and factors such as extent of alluvium, and sub-catchment characteristics. It includes chemistry zones of low salinity such as the North Coast Alluvium, Noosa, North Stradbroke and Moreton Islands, and Northern Coastal Sands, particularly in wallum country. There are also zones of moderate to high salinity, as well as brackish zones. Dominant ions include Na, Mg, HCO ₃ , CI, and NO ₃ . (Most of the Cooloola sandmass is in the Northern Coastal Sands zone. The western portion is in the North Coast Alluvium zone.)	GWQ1401
Fractured rock	Aquifers in hard rock with water stored in fractures or permeable sandstones other than those considered part of the GAB. Divided into 16 chemistry zones on the basis of rock type, location and water quality. Dominant ions include Ca, Mg, Na, Cl, HCO ₃ . Salinity is typically moderate to very high, with only two zones of low (Toowoomba Region Basalts (cont) weathered) or very low (Lamington Basalt) salinity.	GWQ1402
Cainozoic Deposits including Sediments overlying the GAB	Sediments overlying the GAB are divided into 10 chemistry zones, of which two zones had sufficient data for calculating percentiles. The Petrie Basin is typical of fine grained sediment influenced by development, whereas both Sandy Creek Saline Weathered Alluvium and Minor Weathered Tertiary Deposits are typical of the Great Dividing Range overlain by basalt. Dominant ions include Ca, Mg, Na, Cl, and HCO ₃ , and salinity is moderate.	GWQ1403
Lower GAB	The groundwater in the lower GAB has been divided into nine chemistry zones: Central Huttons, Laidley Creek Sandstones, Lockyer Valley Sandstones, Lockyer Valley Sandstones Headwaters, Lockyer Sandstones Recharged Area, Logan Albert Walloons, South East Walloons (cont), South Eastern Hutton Outcrop (cont), and South Eastern Marburgs. Dominant ions include Na, Ca, Cl, Mg, and HCO ₃ . Salinity ranges from moderate to very high, mostly typical of fine grained sediments, although the chemistry of the Laidley Creek Sandstones and the Lockyer Valley Southern Headwaters is typical of basalt.	GWQ1407
Basal GAB	Sixteen chemistry zones have been defined, however 7 of the zones did not have sufficient data for calculating percentiles. Dominant ions include Na, Ca, Cl, Mg, and HCO ₃ . Salinity is highly variable and ranges from low to very high. The zone of very low salinity, the Nambour Basin, is typical of wallum country.	GWQ1408
Earlier basins partially underlying the GAB	This aquifer class has been divided up into the following four groundwater chemistry zones: Brisbane Coal Bearing Beds, Ipswich Coal Deposits, Kholo Sediments and Volcanics, and Logan Coal Measures. The Logan Coal Measure zone has sufficient data for calculating percentiles (other zones insufficient). This zone has high salinity, but it can be variable. Dominant ions are Na and CI, which is typical of fine grained sediment.	GWQ1409

Notes:

- 1. Groundwater assessment and classification originally prepared for South East Queensland (refer reference below and water type definitions in section 3.1 of this document).
- 2. Water quality characteristics of springs are expected to relate to the source aquifer from which a spring emanates, for example artesian springs (subject to local catchment and other influences).

Reference:

Department of Environment and Science (2023) Groundwater chemistry zones in South East Queensland: Draft environmental values and water quality chemistry ranges. Brisbane: Department of Environment and Science, Queensland Government

ENVIRONMENTAL VALUES AND MANAGEMENT GOALS

2 Environmental values and management goals

2.1 Environmental values

Environmental values (EVs) for water are the qualities of water that make it suitable for supporting aquatic ecosystems and human water uses (refer dictionary to this document for further details). EVs for groundwaters covered by this document are shown in Table 2 and the accompanying plans (GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409).

Table 2 Environmental values: South East Queensland groundwaters

	Enviro	nmental v	alues ¹⁻⁶									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation ⁵	Secondary recreation ⁵	Visual recreation ⁵	Drinking water 5	Industrial use	Cultural and spiritual values
Water (listed alphabetically)	*							1	(i)			C
ALLUVIUM (refer plan GWQ1401)												
Central Lockyer Creek	V	~	~	V						✓		✓
Gatton Sandstones Saline Area	✓	~	✓	~						✓		✓
Glasshouses	✓	✓	√	~						✓		✓
Gold Coast Alluvials	V	1	√	V						√		✓
Lockyer Southern Basaltic Headwaters	~	✓	✓	✓						✓		✓
Logan Albert Basaltic Headwaters	\ \	~	✓	√						✓		✓
Logan and Albert	~	✓	√	✓						✓		✓
Lower Bremer	Y	√	✓	✓						✓	✓	✓
Lower Brisbane River	~	√	✓	√						√		✓
Lower Lockyer	✓	✓	✓	✓						✓	✓	✓

	Enviro	nmental v	⁄alues¹-6									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation 5	Secondary recreation ⁵	Visual recreation ⁵	Drinking water 5	Industrial use	Cultural and spiritual values
Water (listed alphabetically)			•••	R-L				1				Ü
Moreton Bay Estuarine and Deltaic Area	✓	✓	Y	√						✓		✓
North Coast Alluvium	✓	✓	~	V						√		√
North Stradbroke and Moreton Islands	1	Y	~	~						✓		✓
Northern Coastal Sands	~	~	✓	V						✓		✓
Northern Estuarine Deposits	✓		✓	~						✓		✓
Northern Moreton Bay Alluvium	V	/	✓	Y						✓		✓
Pumicestone	*	~	✓	~						√		✓
Southern Coastal Sands	~		✓	✓						√		✓
Southern Deltaic and Estuarine Deposits	~		✓	✓						√		✓
Southwest Lockyer Tributaries	*	✓	✓	✓						✓		✓
Upper Brisbane	~	✓	√	✓						✓	✓	√
Upper Lockyer Creek	✓	✓	✓	✓						✓	✓	✓

	Enviror	nmental v	alues ¹⁻⁶									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation ⁵	Secondary recreation ⁵	Visual recreation ⁵	Drinking water ⁵	Industrial use	Cultural and spiritual values
Water (listed alphabetically)	‡		Į.	È				1				T
Warrill and Upper Bremer River	✓	✓	>	>						√		✓
FRACTURED ROCK (refer plan GWQ1402)												
Cressbrook Creek	V	\	~	✓						✓		✓
Esk Trough Paleozoic sediments	√	~	✓	√						✓		✓
Lamington Basalt	✓		√	~						✓		✓
Lower Condamine Basalts (cont)	V	1	√	V						✓	✓	✓
Lower Condamine Basalts (cont) weathered	~	✓	✓	√	✓					✓		✓
Mount Tamborine	×		✓	√						√		✓
North Eastern Great Dividing Range	V	✓	√	✓						✓		✓
Northeast Mesozoic Volcanics	*		✓	✓						✓		✓
Northern Basalts (cont)	✓		✓	✓						✓		✓
North Granite Outcrop	✓		✓	✓						✓		✓

`
_
_

	Enviror	nmental v	alues ¹⁻⁶									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation 5	Secondary recreation ⁵	Visual recreation ⁵	Drinking water ⁵	Industrial use	Cultural and spiritual values
Water (listed alphabetically)	*		<u>≘</u>					1				Ü
Eastern Trap Rocks	√	✓	V	✓						✓	✓	✓
Sunnybank weathered basalt remnants	✓		~	V						✓		✓
Toowoomba Region Basalts (cont)	1	~	~	V	V					√	✓	✓
Toowoomba Region Basalts (cont) weathered	>		✓	√						✓		✓
Upper Condamine Basalts (cont)	✓	~	✓	~	✓					✓	✓	✓
Western Great Dividing Range	Y	\	✓	Y						✓		✓

١	\	ν.

	Enviro	nmental v	alues ¹⁻⁶									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation ⁵	Secondary recreation ⁵	Visual recreation ⁵	Drinking water ⁵	Industrial use	Cultural and spiritual values
Water (listed alphabetically)	*		≘ ∓∓1					1				Ţ
CAINOZOIC DEPOSITS INCLUDING SEDIMENTS OF	VERLYIN	IG THE C	SREAT AI	RTESIAN	BASIN (refer plaı	n GWQ140	3)				
Amberley Basin	✓		~	✓						✓		✓
Beaudesert Beds	1		~	4						✓		✓
Central Tertiary Sediments	√		✓	Y						✓		✓
Duricrust Main Range	✓		✓	✓						✓		✓
Minor Northern Tertiary Deposits	✓		~	1						✓		✓
Minor Weathered Tertiary deposits	✓	~	✓	✓						✓		✓
Northern Tertiary Remnants	~		✓	✓						✓		✓
Petrie Basin	~	✓	√	✓						✓		✓
Sandy Creek Saline Weathered Alluvium	~		√	✓						✓		✓
Sediments Overlying Coal Measures	~		✓	√						√		√

	Enviro	nmental v	/alues ¹⁻⁶										
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation 5	Secondary recreation ⁵	Visual recreation ⁵	Drinking water 5	Industrial use	Cultural and spiritual values	
Water (listed alphabetically)			•••					1				Ü	
LOWER GREAT ARTESIAN BASIN (refer plan GWQ1407)													
Central Huttons	/	✓	~	V						✓		✓	
Laidley Creek Sandstones	1	~	✓	V						√		✓	
Lockyer Sandstones Recharged Area	√	✓	✓	Y						✓		✓	
Lockyer Valley Southern Headwaters	V	V	V	~						√	✓	✓	
Lockyer Valley Sandstones	✓	✓	✓	V						✓	✓	✓	
Logan Albert Walloons	V		✓	✓						✓		✓	
South East Walloons (cont)	~	~	~	✓	✓					✓	✓	✓	
South Eastern Hutton Outcrop (cont)	~	√	√	✓						√	✓	✓	
South Eastern Marburgs	~	✓	√	✓						✓		✓	

	Enviro	nmental v	alues ¹⁻⁶									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation 5	Secondary recreation ⁵	Visual recreation ⁵	Drinking water ⁵	Industrial use	Cultural and spiritual values
Water (listed alphabetically)	*		•••	R-L				1				Ţ
E .	BASAL G	REAT A	RTESIAN	BASIN (refer plai	n GWQ14	108)					
Albert River Woogaroo	✓		~	V						✓		✓
Beuaraba Woogaroo	V	Y	~	✓						✓	✓	✓
Clarence Moreton Nambour Connection	✓		✓	~						√		✓
Eastern Central Area (cont)	√	/	✓	~						√	✓	✓
Eastern Evergreen Outcrop (cont)	\	~	✓	Y						✓		✓
Eudlo Creek Nambour Formation	>		✓	✓						✓		✓
Gatton Sandstone Southwestern Headwaters	×		√	✓						✓		✓
Gatton Sandstone Saline Area	~	~	√	✓						✓		✓
Kin Kin Beds	Y		✓	✓						✓		✓
Logan Albert Sandstones	V		✓	✓						✓		✓
Lower Lockyer Recharged Area	✓	✓	✓	✓						✓		✓

5	n
7	

	Enviro	nmental v	alues ¹⁻⁶									
GROUNDWATERS (Refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409)	Aquatic ecosystem	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer ⁵	Primary recreation ⁵	Secondary recreation ⁵	Visual recreation ⁵	Drinking water ⁵	Industrial use	Cultural and spiritual values
Water (listed alphabetically)	*		≘					1				
Nambour Basin	✓	✓	V	√						✓		√
Noosa River Sandstone	✓		~	V						✓		✓
South Eastern Evergreen (cont)	1	~	~	V						✓	√	✓
Southern Moreton Bay and Barrier Islands	V		✓	4						✓		✓
Tarong Basin	√		✓	~						✓		✓

Environmental values¹⁻⁶ Secondary recreation⁵ **GROUNDWATERS** Cultural and spiritual values Primary recreation (Refer plans GWQ1401, GWQ1402, Human consumer recreation Farm supply/use GWQ1403, GWQ1407, GWQ1408, GWQ1409) **Drinking water** Industrial use Stock water Aquatic Visual Water (listed alphabetically) **EARLIER BASINS PARTIALLY UNDERLYING THE GREAT ARTESIAN BASIN (refer plan GWQ1409)** Brisbane Coal Bearing Beds ✓ ✓ / ✓ **Ipswich Coal Deposits** ✓ Kholo Sediments and Volcanics Logan Coal Measures ✓

Notes:

- 1. Refer to the accompanying groundwater plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409 for locations of EVs. EVs shown relate to waters within each chemistry zone (for example 'Northern Moreton Bay Alluvium') as shown on the plans. Groundwater chemistry zones continuing across regional boundaries (e.g. to the Qld Murray Darling Basin) are identified with 'cont'.
- 2. ✓ means the EV is selected for protection. Blank indicates that the EV is not chosen for protection. Note in relation to connections with surface water (covered in separate schedule documents), the ANZG Application of the Water Quality Guidelines to groundwater states: "...groundwater should be managed in such a way that when it comes to the surface, whether from natural seepages or from bores, it will not cause the established water quality objectives for these waters to be exceeded, nor compromise their designated community values"
- 3. Refer to the dictionary for further explanation of EVs.
- 4. Refer to sections 3-4 for WQOs applying to the EVs in this table.
- 5. (This note applies primarily to surface waters.) The selection of recreational and other human use EVs for waters does not mean that these waters are free of dangerous aquatic organisms, for example venomous organisms (e.g. marine stingers including box jellyfish, irukandji jellyfish), crocodiles, and sharks. Direct contact with dangerous aquatic organisms should be avoided. Refer to DES Crocodiles, council, Queensland Health, Beachsafe, marine stingers, and other information sources for further details on swimming safety and information on specific waters. Access restrictions may apply in certain locations (e.g. ports, defence, Traditional Owner lands), or at certain times of the year. Restrictions on certain activities (e.g. fishing, camping) may also apply in particular areas. Check with relevant authorities.

6. The selection of EVs for waters does not replace the need for more detailed testing to ascertain suitability of a specific water source (e.g. bore) for a particular use (e.g. irrigation). Further, this information does not mean that these are currently free of toxicants (including bioaccumulative toxicants). Information about contaminated land can be accessed by searching the Environmental Management and Contaminated Land Registers. For information on per and poly-fluoroalkyl substances (PFAS), including alert areas and links to further health advice on water use in such areas, refer to PFAS in Queensland.

References:

Department of Environment and Science (2023) Groundwater chemistry zones in South East Queensland: Draft environmental values and water quality chemistry ranges. Brisbane: Department of Environment and Science, Queensland Government

2.2 Management goals to support environmental values

2.2.1 National policy guidance on groundwaters

National guidance on the management of ground water quality is provided in the following sources.

- ANZG Application of the Water Quality Guidelines to groundwater
- Guidelines for groundwater quality protection in Australia
- Great Artesian Basin Strategic Management Plan

Extracts of relevant advice informing derivation of water quality objectives are provided in notes to Table 3. Key national policy messages include:

- protection and enhancement of groundwater quality for the maintenance of specified environmental values.
- use of scientifically defensible data/approaches, including water quality information specific to an individual groundwater system, as a basis for identifying local groundwater quality and its variability
- recognition of groundwater connectivity under surface basin boundaries and links between groundwater and surface waters, including requirements of groundwater dependent ecosystems (subterranean and surface).

2.2.2 Management goal for groundwaters (aquatic ecosystems)

The management goal for groundwaters is that groundwater quality is maintained or improved to meet requirements of groundwater dependent ecosystems (surface and subterranean).

2.2.3 Management intent for waters

It is the management intent for Queensland waters that the decision to release waste water or contaminant to waters must ensure the following:

- for high ecological value (HEV) waters—the measures for the indicators for all EVs of waters are maintained
- for slightly disturbed (SD) waters—the measures for the slightly modified physical or chemical indicators are progressively improved to achieve the water quality objectives for high ecological value water
- · for moderately disturbed (MD) waters:
 - if the measures for indicators of the EVs achieve the water quality objectives for the water—the
 measures for the indicators are maintained at levels that achieve the water quality objectives for the
 water, or
 - if the measures for indicators of the EVs do not achieve the water quality objectives for the water—the
 measures for indicators are improved to achieve the water quality objectives for the water
- for highly disturbed (HD) waters—the measures for the indicators of all EVs are progressively improved to achieve the water quality objectives for the water.

Note 1 — refer to accompanying plans for locations of waters and level of protection/management intent

Note 2 — see the Environmental Protection Regulation 2019, section 35

Note 3 — see the EPP (Water and Wetland Biodiversity), section 15.

Aquatic ecosystem WQOs are provided in section 3 of this document.

2.2.4 Management goals for human use environmental values

Management goals for human use EVs are provided below. WQOs to support these goals are provided in section 4 of this document. Note that human use management goals in this section are provided for all potentially applicable human use EVs and water types. As the range of human use EVs varies by water, reference to section 2 is required to identify the human use EVs stated for a particular water, from which the corresponding human use management goals and WQOs tables (section 4) can then be identified.

8

2.2.4.1 Irrigation water quality

The management goal for irrigation water is that the quality of water, when used in accordance with the best irrigation and crop management practices and principles of ecologically sustainable development, does not result in crop yield loss or soil degradation (noting that water quality requirements may differ by crop type).

2.2.4.2 Farm supply use

The management goal for farm supply use is that the quality of water is suitable for produce preparation and domestic uses other than drinking. (Drinking and other human uses outlined below.)

2.2.4.3 Stock water quality

The management goal for stock watering is that the quality of water provided to stock does not cause deterioration in stock health or condition (noting that water quality requirements may differ by stock type).

2.2.4.4 Aquaculture

3

The management goal for aquaculture is that the quality of water provided for aquaculture does not cause deterioration in stocked species health or condition (noting that water quality requirements may differ by species).

2.2.4.5 Human consumers of aquatic foods

The management goal is that the water quality is suitable for producing or taking aquatic foods that are safe and suitable for human consumption.

2.2.4.6 Recreational water quality

The management goal for recreational water quality is to achieve a low risk to human health from water quality threats posed by exposure through ingestion, inhalation or contact during recreational use of water resources.

2.2.4.7 Raw water for drinking water consumption

The management goal is to:

- minimise the risk that the quality of raw water taken for treatment for human consumption results in adverse human health effects
- maintain the palatability rating of water taken for treatment for human consumption at the level of 'good' as set out in the ADWG
- minimise the risk that the quality of raw water taken for treatment for human consumption results in the odour of drinking water being offensive to consumers.

2.2.4.8 Industrial use

The management goal for industrial use is that the quality of water provided to industry is, with an appropriate level of treatment, suitable for industrial use. Industries usually treat water supplies to meet their specific needs, accordingly no WQOs are specified in this document for industrial use.

2.2.4.9 Cultural and spiritual values and uses of water

The management goal is that water is suitable to support identified cultural and spiritual values of waters, including those of Aboriginal people or Torres Strait Islanders. Management goals and objectives specified for aquatic ecosystems and other human water uses (including recreation, human consumption of aquatic foods, and drinking water) will assist in supporting some aspects of cultural and spiritual values of water.

WATER QUALITY OBJECTIVES TO PROTECT ENVIRONMENTAL VALUES

AQUATIC ECOSYSTEM WATER QUALITY OBJECTIVES

3 Water quality objectives to protect aquatic ecosystem environmental values

This section provides physical, chemical and where available, biological water quality objectives (WQOs) to support and protect the aquatic ecosystem EV for groundwaters. (Human use EVs, including recreation, stock watering etc, are addressed in section 4).

For surface waters of South East Queensland (including surface fresh, estuarine and coastal waters), refer to separate documents and mapping under schedule 1 of the EPP (Water and Wetland Biodiversity), available from the Department's website.

The aquatic ecosystem EV is a default applying to all Queensland waters, and therefore the WQOs for aquatic ecosystems form the minimum WQOs for all waters. Where no human use EVs are identified, the WQOs identified for aquatic ecosystem protection remain applicable.

3.1 Aquatic ecosystem water quality objectives

WQOs for specified indicators are listed in Table 3 (by aquifer type/chemistry zone).

Details on management intent are included in the tables and notes supporting tables. Links to wetland, riparian and State Planning Policy (state interest – water quality) mechanisms are provided in and after the tables. Sources used in deriving WQOs are provided in and after the tables.

Table 3 Aquatic ecosystem water quality objectives – groundwaters (by aquifer class and chemistry zone)

											DWATER				
				(ref	er plans (Ť	Ť	/Q1403, G water qu		•	408, GV	VQ1409) ¹⁻	3	
AQUIFER Chemistr (Source:	y zone	Percentile	maintained w Refer to secti may not be p should refer t	vithin the naturition 3.2 for det rotective of suctors of suctors and the surface wat	ral range of va tails on compa urface water a ter EVs and W	of protection/n riability. WQC ring test wate quatic ecosys QOs tables co	nanagement i Os for indicato r quality data tems, includin ontained in se	ntent for grours are typicall with the WQC g groundwate parate sched	ndwaters is higy shown as a roote that the dependent e	gh ecological range of 20 th , ne WQOs in t cosystems. V s for surface v	value (HEV), v 50 th and 80 th p his table are so Where groundv	ercentiles, olely for gro vater is exp	undwater aqua	d (HEV) or achieved tic ecosystems and ce waters, readers	
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	pН	Alkalinity (mg/L)	SiO ₂ (mg/L)	
	surface waters of South rom the Department's v				stuarine and o	oastal waters), refer to sep	arate docume	ents and mapp	ing under sch	nedule 1 of the	EPP (Wate	r and Wetland I	Biodiversity),	
ALLU	ALLUVIUM (refer plan GWQ1401)														
∑		20 th	32	8	3	122	26	ID	ID	255	32	7.5	100.0	ID	
ALLUVIUM	1 – North Coast Alluvium (s1)	50 th	48	15	7	240	40	17	ID	455	83	7.7	196.0	ID	
- F	` ,	80 th	370	24	26	427	200	ID	ID	1600	148	7.9	350.0	ID	
∑		20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	
ALLUVIUM	1 – North Coast Alluvium near	50 th	370	8	4	427	200	17	ID	1600	32	7.6	350.0	ID	
- F	stream (s1)	80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	
∑		20 th	13	1	2	3	17	1	0.50	109	13	5.1	2.0	8.0	
ALLUVIUM	2 – Glasshouses (s1, s2) - MD	50 th	18	3	4	13	24	2	10.50	173	26	5.9	11.0	11.0	
- AL	, ,	80 th	40	11	10	38	41	4	10.6 ANZG	400	69	6.5	33.8	20.0	
M		20 th	13	1	2	3	17	1	0.50	108	13	5.1	2.0	8.0	
ALLUVIUM	2 – Glasshouses near stream (s1, s2)	50 th	17	4	4	13	24	2	10.6 ANZG	170	27	5.8	10.5	11.0	
- AL	- MD	80 th	40	11	10	38	40	4	10.6 ANZG	404	69	6.5	32.4	19.0	

						SOUT	TH EAST	QUEENS	SLAND -	GROUN	DWATER	S		
				(refe	er plans (GWQ140	1, GWQ1	402, GW	Q1403, C	SWQ140	7, GWQ14	408, GV	VQ1409) 1-	-3
						Ac	uatic ec	osystem	water qu	uality obj	ectives			
AQUIFER Chemistr (Source:	y zone	Percentile	maintained w Refer to sect may not be p should refer	vithin the naturion 3.2 for det rotective of su to surface wat	ral range of va cails on compa urface water a cer EVs and W	riability. WQC ring test wate quatic ecosys QOs tables c	Os for indicato er quality data tems, includin ontained in se	rs are typically with the WQC og groundwate parate schedu	y shown as a les. Note that the r dependent of the documents	range of 20 th , he WQOs in t ecosystems. V s for surface v	50 th and 80 th phis table are so Where ground	ercentiles, olely for gro vater is exp	undwater aqua	ed (HEV) or achieved. atic ecosystems and ce waters, readers
			Sources: S1	: Local datase	ets/reporting (a	applies to all V	VQOs except	where indicate	ed); S2: ANZ0	3				
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
M		20 th	42	7	5	28	52	6	0.31	317	42	6.4	26.4	12.0
I I	3 – Northern Moreton Bay	50 th	160	27	35	161	149	13	1.00	1100	188	7.0	134.0	33.0
AL AL	3 – Northern Moreton Bay Alluvium (s1)	80 th	908	183	386	508	1404	81	5.68	6090	1802	7.6	429.8	66.0
M	3 – Northern	20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
ALLUVIUM	Moreton Bay Alluvium near	50 th	127	37	52	508	1D	25	ID	1148	334	7.6	419.5	ID
AL	stream (s1)	80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
M		20 th	47	37	21	123	114	3	0.25	626	180	6.9	107.0	28.8
ALLUVIUM	4 – Upper Brisbane (s1)	50 th	65	60	33	174	190	8	2.00	958	295	7.4	146.5	36.0
¥	, ,	80 th	130	105	65	270	393	20	8.00	1595	543	8.0	242.4	47.0
∑		20 th	48	42	22	128	126	3	0.40	642	195	6.9	107.0	29.0
ALLUVIUM	4 – Upper Brisbane near stream (s1)	50 th	63	61	33	174	192	8	2.40	945	289	7.4	144.0	37.0
¥		80 th	120	102	59	250	384	17	8.32	1497	473	7.9	212.4	47.0

			JIVAN 1 – Not g	overninent po	nicy - South E	ası Queensiai	iu Groundwat	ei Liiviloliille	iliai values ali	u vvatel Qual	ity Objectives			
						SOUT	H EAST	QUEENS	SLAND -	GROUN	DWATER	S		
				(ref	er plans (GWQ140	1, GWQ1	402, GW	Q1403, G	WQ1407	7, GWQ14	108, GV	VQ1409) ¹∹	3
						Aq	uatic ec	osystem	water qu	ality obj	ectives			
AQUIFER Chemistry (Source:	y zone	Percentile	maintained w Refer to secti may not be p	ithin the natu on 3.2 for det rotective of su	ral range of va ails on compa urface water a	riability. WQC ring test wate quatic ecosys	Os for indicator r quality data tems, includin	rs are typically with the WQC g groundwate	y shown as a r s. Note that th r dependent e	range of 20 th , ne WQOs in the cosystems. V	50 th and 80 th p his table are so Vhere groundw	ercentiles, blely for gro vater is exp	undwater aquat	d (HEV) or achieved. ic ecosystems and ce waters, readers
			Sources: S1	Local datase	ets/reporting (a	applies to all V	VQOs except	where indicate	ed); S2: ANZG					
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
M		20 th	74	45	40	268	166	5	0.25	983	298	7.6	237.6	29.8
N N	5 – Upper Lockyer Creek (s1) - MD	50 th	160	66	55	372	325	13	1.00	1270 a	395	7.9	311.0	36.5
ALL		80 th	269	87	73	502	445	28	5.92	1912 a	510	8.2	396.2	43.2
∑		20 th	83	43	38	263	191	4	0.26	968	289	7.6	228.0	29.4
ALLUVIUM	5 – Upper Lockyer Creek near stream	50 th	171	67	53	336	351	13	1.23	1500 a	386	7.9	301.0	37.5
ALI	(s1) - MD	80 th	297	90	74	538	459	32	5.72	1958 a	532	8.2	407.8	44.0
₹		20 th	85	54	75	189	225	7	1.00	1411	482	7.6	260.0	25.0
N	6 – Central Lockyer	50 th	128	95	120	449	410	23	7.25	1850 a	727	7.8	393.0	35.0
ALL	6 - Central Lockyer Creek (s1, s2) - MD	80 th	210	132	168	570	710	69	10.6 ANZG	2500 a	987	8.1	502.0	44.2
MO.	6 Control Loginian	20 th	91	62	84	315	285	10	1.00	1550	537	7.6	295.4	26.0
ALLUVIUM	6 – Central Lockyer Creek near stream (s1, s2) – MD	50 th	133	98	122	461	430	28	7.25	1990 a	746	7.8	402.0	35.0
⋖	(5., 52)	80 th	218	134	173	575	728	72	10.6 ANZG	2598 a	1039	8.1	506.6	44.0

			Jiva i not g						SLAND -			S		
				(refe	er plans (GWQ140	1, GWQ1	402, GW	Q1403, G	WQ1407	, GWQ14	408, GV	/Q1409) ¹⁻	3
						Aq	uatic ec	osystem	water qu	ality obj	ectives			
AQUIFER Chemistr (Source:	y zone	Percentile	maintained w Refer to sect may not be p should refer t	vithin the naturition 3.2 for det rotective of suctorial surface wat	ral range of va ails on compa urface water a er EVs and W	riability. WQC ring test wate quatic ecosys 'QOs tables co	Os for indicato r quality data tems, includir ontained in se	rs are typically with the WQC og groundwate parate sched	y shown as a r Os. Note that the r dependent e	ange of 20 th , le WQOs in the cosystems. V for surface w	50 th and 80 th p nis table are so /here groundv	percentiles, olely for gro vater is exp	undwater aqua	ed (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
∑		20 th	55	37	38	296	78	5	0.50	820	266	7.6	256.0	30.0
ALLUVIUM	7 – Lower Lockyer (s1, s2) - MD	50 th	99	60	61	442	178	10	2.50	1100 a	415	8.0	380.0	39.0
ALI	(31, 32) - IVID	80 th	210	97	106	610	420	21	10.6 ANZG	1700 a	656	8.3	522.4	48.0
MU		20 th	54	37	38	296	77	5	0.50	820	266	7.6	256.0	30.0
ALLUVIUM	7 – Lower Lockyer near stream (s1, s2)	50 th	96	60	60	440	172	10	2.50	1100 a	409	8.0	379.0	39.0
- AL	- MD	80 th	200	95	105	600	405	20	10.6 ANZG	1660 a	650	8.3	517.2	48.0
Σ		20 th	248	115	167	385	822	48	2.76	3314	959	7.3	319.0	26.0
ALLUVIUM	8 – Southwest Lockyer Tributaries (s1, s2) - MD	50 th	435	202	277	524	1435	133	10.6 ANZG	4300 a	1650	7.6	428.0	34.0
- F	(51, 52) - IVID	80 th	690	344	435	640	2506	283	10.6 ANZG	6500 a	2650	7.9	524.8	42.0
MO	8 – Southwest	20 th	247	117	165	385	840	48	2.92	3350	961	7.3	319.0	26.0
ALLUVIUM	Lockyer Tributaries near stream (s1, s2)	50 th	435	210	280	519	1435	133	10.6 ANZG	4300 a	1652	7.6	423.0	34.0
A	- MD	80 th	690	344	435	638	2485	284	10.6 ANZG	6500 a	2662	7.9	520.0	42.0

			True rest g	1	,						DWATER	S		
				(refe	er plans (GWQ140	1, GWQ1	402, GW	Q1403, G	WQ1407	7, GWQ14	108, GV	VQ1409) 1-3	
						Ac	uatic ec	osystem	water qu	ality obj	ectives			
AQUIFER Chemistry (Source: 9	/ zone	Percentile	maintained w Refer to sect may not be p should refer t	vithin the natur ion 3.2 for deta rotective of su to surface wate	al range of va ails on compa rface water ac er EVs and W	riability. WQC ring test wate quatic ecosys QOs tables c	Os for indicato or quality data tems, includir ontained in se	rs are typically with the WQC g groundwate parate sched	y shown as a r les. Note that the r dependent e ule documents	range of 20 th , ne WQOs in the cosystems. Ver s for surface v	50 th and 80 th p nis table are so Vhere groundw	ercentiles, olely for gro vater is exp	oundwater aquat	d (HEV) or achieved. ic ecosystems and e waters, readers
			Na (mg/L)	: Local datase Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	ed); S2: ANZG NO₃ (mg/L)	EC (µS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
M	9 – Lockver	20 th	44	46	47	239	88	12	1.24	770	320	7.6	227.2	23.6
ALLUVIUM	Southern Basaltic Headwaters (s1, s2)	50 th	86	75	72	338	245	37	4.80	1396	472	7.9	287.0	30.0
AL.	- MD	80 th	133	102	106	425	415	62	10.6 ANZG	1900	691	8.2	350.0	36.4
Σ		20 th	76	70	68	276	230	35	3.0	1320	465	7.6	244.8	21.6
ALLUVIUM	9 – Lockyer Southern Basaltic Headwaters near	50 th	100	86	92	353	332	50	10.5	1700	610	7.8	291.0	33.0
ALI	stream (s1, s2) - MD	80 th	144	105	116	464	446	67	10.6 ANZG	2000	728	8.2	351.0	40.8
W		20 th	57	46	32	243	80	2	0.10	780	264	7.3	233.4	22.0
ALLUVIUM	10 – Warrill and Upper Bremer River (s1) - MD	50 th	99	66	46	427	165	5	0.95	989 a	356	7.7	371.0	38.0
IA	(31) - IVID	80 th	243	102	83	585	411	19	5.10	1729 a	605	8.1	490.0	48.0
Σ	40 14/	20 th	56	46	31	210	78	2	0.10	779	255	7.4	218.4	20.0
ALLUVIUM	10 – Warrill and Upper Bremer River near stream (s1) -	50 th	92	67	42	409	150	5	0.90	963 a	340	7.7	350.0	38.0
ALI	MD	80 th	225	120	83	566	409	19	5.14	1570 a	608	8.1	480.4	48.0
ALLUVIUM	11 – Gatton Sandstones saline area (s1)	All							ID for all					

				(refe	er plans (GWQ140	1, GWQ1	402, GW	Q1403, C	SWQ1407	•		VQ1409) ¹-	3
AQUIFER Chemistry (Source: s	/ zone	Percentile	maintained w Refer to secti may not be p	vithin the naturition 3.2 for det rotective of suctorial surface wat	ral range of va ails on compa irface water ac er EVs and W	of protection/r triability. WQC tring test wate quatic ecosys 'QOs tables co	Os for indicato er quality data tems, includin ontained in se	ntent for groungs are typically with the WQC g groundwate parate schedu	ndwaters is high shown as a lead to be a lea	gh ecological range of 20 th , he WQOs in tl ecosystems. V s for surface w	value (HEV), v 50 th and 80 th p his table are so Vhere groundv	percentiles, olely for gro vater is exp	oundwater aqua	ed (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
Σ	20 th 171 70 76 365 441 10 0.50 2196 530 7.4 312.2 27.0											27.0		
LUVIUM	12 – Lower Bremer (s1)	50 th	380	152	192	500	1200	27	3.55	4275	1137	7.7	425.0	36.0
AL	(51)	80 th	755	295	338	714	2242	157	17.56	7314	2162	8.0	594.4	44.0

		L	JIVAL I – HOLY	overninent po	illey - South L	asi Queensia	iu Groundwai	ei Environne	iliai values ai	iu vvalei Quai	ity Objectives			
						SOUT	H EAST	QUEENS	SLAND -	GROUN	DWATER	S		
				(refe	er plans (GWQ140	1, GWQ1	402, GW	Q1403, C	SWQ1407	7, GWQ14	408, GV	VQ1409) 1-	3
						Ac	uatic ec	osystem	water qu	ıality obj	ectives			
AQUIFER Chemistry (Source:	y zone	Percentile	maintained w Refer to sect may not be p	vithin the naturion 3.2 for det orotective of su	ral range of va ails on compa ırface water a	riability. WQC ring test wate quatic ecosys	Os for indicato r quality data tems, includin	rs are typically with the WQC g groundwate	y shown as a ls. Note that the r dependent e	range of 20 th , ne WQOs in tl ecosystems. V	50 th and 80 th p his table are so Vhere groundv	ercentiles, olely for gro vater is exp	oundwater aqua	ed (HEV) or achieved. tic ecosystems and ce waters, readers
			Sources: S1	: Local datase	ets/reporting (a	applies to all V	VQOs except	where indicate	ed); S2: ANZ0	}				
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
M		20 th	97	8	10	24	136	6	0.29	869	84	6.2	50.6	20.0
ALLUVIUM	13 - Logan and Albert (s1) - MD	50 th	217	53	62	283	550	22	1.20	1699 a	415	7.3	257.0	34.0
AL	rusore (61) ms	80 th	614	205	151	533	1530	70	3.34	4100 a	1089	7.9	455.2	46.0
E		20 th	157	64	57	200	370	10	0.50	1800	429	7.1	223.0	26.8
ALLUVIUM	13 – Logan and Albert near stream	50 th	298	170	110	460	970	28	1.30	2820 a	954	7.6	390.5	36.0
AL	(s1) - MD	80 th	709	359	188	617	2053	63	3.00	4703 a	1760	8.0	521.0	42.0
Σ	14 – Logan Albert	20 th	53	46	34	57	75	1	0.25	809	266	7.3	280.2	25.0
ALLUVIUM	Basaltic Headwaters (s1) -	50 th	112	78	50	420	171	4	1.00	990 a	396	7.7	378.5	39.0
AF	MD MD	80 th	194	131	84	540	468	10	4.30	1764 a	681	8.1	472.0	53.4
M	14 – Logan Albert	20 th	57	50	37	68	78	1	0.23	842	297	7.3	295.0	23.0
ALLUVIUM	Basaltic Headwaters near	50 th	116	80	51	430	181	4	1.00	1050 a	411	7.8	386.0	41.0
AL	stream (s1) - MD	80 th	195	134	84	545	490	11	4.40	1841 a	691	8.1	474.2	54.0

		L		overninent po	iicy - Soulli E	ası Queensial	ia Groundwal	er Environmei	nai values al	iu vvalei Qual	ity Objectives			
						SOUT	H EAST	QUEENS	SLAND -	GROUN	DWATER	S		
				(refe	er plans	GWQ140	1, GWQ1	402, GW	Q1403, 0	SWQ1407	7, GWQ14	408, GW	/Q1409) ^{1–}	3
						Δn	watic ec	osystem	water or	iality ohi	ectives			
AQUIFER	CLASS		Note: Even	t where indicat	tad the level							ubara arau	duater quality	should be
Chemistr	y zone	Percentile	maintained w	ithin the natur	al range of va	riability. WQC	s for indicato	rs are typically	shown as a	range of 20th,	50th and 80th p	ercentiles,	ndwater quality to be maintaine	ed (HEV) or achieved.
(Source:	s1)		may not be p	rotective of su	rface water a	quatic ecosys	tems, includin	g groundwate	r dependent e	cosystems. V	Vhere groundy	vater is exp	ressed to surfa	tic ecosystems and ce waters, readers
								-			aters (includir	ng aquatic e	cosystem WQ0	Os).
				: Local datase										
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	pН	Alkalinity (mg/L)	SiO₂ (mg/L)
_		20 th	55	14	12	28	98	17	ID	535	73	6.9	23.0	13.2
NO!	45 0-14 04		55				98			535				
ALLUVIUM	15 – Gold Coast Alluvials (s1)	50 th	198	34	38	100	360	80	ID	1500	217	7.9	83.0	21.0
Ι¥		80 th	1420	100	121	279	2110	417	ID	7850	762	8.3	218.0	58.6
Σ		20 th	142	24	25	98	224	ID	ID	1110	215	7.1	83.0	ID
ALLUVIUM	15 – Gold Coast Alluvials near	50 th	198	38	38	101	360	81	ID	1500	241	8.1	84.0	46.0
AL AL	stream (s1)	80 th	468	135	103	265	878	ID	ID	3140	762	8.4	218.0	ID
MO	16 – Southern	20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
ALLUVIUM	Deltaic and Estuarine Deposits	50 th	1193	97	173	322	3600	88	ID	12800	1018	7.6	268.5	19.0
- F	(s1)	80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
W ∩	47. Manatan B	20 th	36	5	4	4	45	8	0.50	403	37	3.8	8.4	13.0
ALLUVIUM	17 – Moreton Bay Estuarine and	50 th	185	20	26	66	465	32	0.95	1675	212	6.4	63.0	19.5
ALI	Deltaic Area (s1)	80 th	696	118	165	235	3280	140	5.12	11480	960	7.7	217.6	31.0

			PRAFT - not g	overnment po	iicy - South E	ası Queensiai	nd Groundwat	er Environmei	ntai values ar	nd vvater Qual	ity Objectives			
AQUIFER Chemistry (Source: s	zone	Percentile	maintained w Refer to secti may not be p	where indicated in the nature on 3.2 for detective of surface water	ted, the level al range of va ails on compa ırface water a er EVs and W	GWQ140 Action protection/r ariability. WQC aring test wate quatic ecosys (QOs tables of	1, GWQ1 uatic economic analogement i pos for indicato r quality data tems, includin ontained in se	ntent for ground rs are typically with the WQO g groundwate parate scheduler.	Q1403, C water quandwaters is high shown as a des. Note that the dependent of the decomments of the control of	gh ecological range of 20 th , he WQOs in the ecosystems. V is for surface v	ectives value (HEV), 50 th and 80 th phis table are so	where group percentiles, olely for growater is exp	oundwater aqua	should be ed (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
Σ		20 th	38	5	6	0	60	20	0.00	410	42	4.0	1.0	9.6
ALLUVIUM	18 – Pumicestone (s1)	50 th	143	20	21	49	220	84	0.80	1100	143	6.0	48.0	14.0
AL AL	(-')	80 th	425	75	122	133	690	314	5.58	2990	650	6.6	111.0	31.4
ALLUVIUM	18 – Pumicestone near stream (s1)	All						1	D for all					
ALLUVIUM	19 – Northern Estuarine Deposits (s1)	All						ì	D for all					_
ALLUVIUM	20 – Southern Coastal Sands (s1)	All						I	D for all					
M	21 – North	20 th	12	0	1	2	19	2	0.02	87	7	5.2	2.0	6.0
ALLUVIUM	Stradbroke and Moreton Islands	50 th	16	1	2	6	25	3	0.30	112	9	5.8	5.0	9.0
AF	(s1)	80 th	23	2	3	18	32	5	1.10	148	16	6.6	17.0	10.0

AQUIFER CLASS Chemistry zone (Source: s1)		Percentile	SOUTH EAST QUEENSLAND – GROUNDWATERS (refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409) 1-3 Aquatic ecosystem water quality objectives Note: Except where indicated, the level of protection/management intent for groundwaters is high ecological value (HEV), where groundwater quality should be maintained within the natural range of variability. WQOs for indicators are typically shown as a range of 20 th , 50 th and 80 th percentiles, to be maintained (HEV) or achieved. Refer to section 3.2 for details on comparing test water quality data with the WQOs. Note that the WQOs in this table are solely for groundwater aquatic ecosystems and may not be protective of surface water aquatic ecosystems, including groundwater dependent ecosystems. Where groundwater is expressed to surface waters, readers should refer to surface water EVs and WQOs tables contained in separate schedule documents for surface waters (including aquatic ecosystem WQOs). Sources: S1: Local datasets/reporting (applies to all WQOs except where indicated); S2: ANZG Na Ca Mg HCO ₃ CI SO ₄ NO ₃ EC Hardness Alkalinity SiO ₂											
			ALLUVIUM	22 – Northern Coastal Sands (s1)	20 th	15	1	2	3	24	1	0.00	132	13
50 th	30	4			5	16	47	3	0.25	258	34	5.5	14.0	10.0
80 th	55	11			8	66	86	12	0.50	426	60	6.4	55.0	14.0
ALLUVIUM	23 – Lower Brisbane River (s1)	20 th	35	2	5	8	46	4	0.42	254	23	5.5	15.2	11.8
		50 th	108	16	20	115	163	14	1.00	891	118	7.1	110.0	27.0
		80 th	451	80	70	435	762	57	18.24	2840	471	7.8	366.0	45.0
ALLUVIUM	23 – Lower Brisbane River near stream (s1)	20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
		50 th	198	31	25	163	320	9	1.40	1175	203	7.0	134.5	32.5
		80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID

		L	DRAFT – not g	overnment po	ilcy - South E	ast Queensiai	nd Groundwai	er Environme	ntai values an	id vvaler Qua	ity Objectives			
				(rofe	or plane (·			DWATER		VQ1409) ¹∹	3
				(rei	er pians v		•	osystem	·		•	406, GV	VQ1409) '-	
AQUIFER	CLASS		N (5										1 (12	
Chemistry (Source:	y zone	Percentile	maintained w Refer to sect may not be p	vithin the natur ion 3.2 for det rotective of su	ral range of va ails on compa ırface water a	riability. WQC ring test wate quatic ecosys	Os for indicato r quality data tems, includin	rs are typically with the WQC g groundwate	/ shown as a i s. Note that the r dependent e	range of 20 th , ne WQOs in t ecosystems. V	50 th and 80 th p nis table are so Vhere groundv	percentiles, olely for gro vater is exp	oundwater aqua	d (HEV) or achieved. tic ecosystems and ce waters, readers
			Sources: S1	: Local datase	ts/reporting (a	applies to all V	VQOs except	where indicate	ed); S2: ANZO	3				
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
FRAC	TURED ROC	CK (refer p	olan GW	(Q1402)										
SED .		20 th	50	18	16	293	45	0	0.00	688	123	7.6	241.6	24.0
FRACTURED	1 – Upper Condamine Basalts	50 th	76	46	65	513	96	3	2.50	1050	413	7.9	425.0	36.0
FR/	(cont) (s1)	80 th	120	72	115	650	205	9	23.00	1500	639	8.3	535.2	45.0
FRACTURED ROCK	2 – Lower Condamine Basalts (cont) weathered (s1)							1	D for all					
ED		20 th	100	17	9	265	95	7	0.00	810	90	7.6	226.0	31.6
FRACTURED ROCK	3 – Lower Condamine Basalts	50 th	160	57	51	410	210	16	0.70	1300	390	8.0	360.0	51.0
FRA	(cont) (s1)	80 th	300	115	110	553	634	35	17.50	2600	688	8.3	468.0	60.0
RED		20 th	67	16	7	179	85	4	0.25	660	83	7.5	150.0	20.0
FRACTURED	4 – Toowoomba Region Basalts	50 th	97	52	59	356	180	10	4.70	1179	396	7.9	297.0	34.0
FR/	(cont) (s1)	80 th	143	100	119	540	350	22	33.84	1809	717	8.2	450.0	46.0

			Trutt Hotg	overnment pe	noy Count E						DWATER	S		
				(refe	er plans (•					VQ1409) ^{1–3}	
				•	·		•	osystem	·		•	Í	,	
AQUIFER Chemistry (Source: s	/ zone	Percentile	maintained w Refer to secti may not be p should refer t	vithin the naturition 3.2 for det rotective of suctoring suctoring the succession of	ral range of va ails on compa ırface water a er EVs and W	of protection/r ariability. WQC aring test wate quatic ecosys /QOs tables co	nanagement i Os for indicato r quality data tems, includin ontained in se	ntent for grour rs are typically with the WQO g groundwate	dwaters is hi shown as a s. Note that t dependent of le documents	gh ecological range of 20 th , he WQOs in t ecosystems. \ s for surface \	value (HEV), v 50 th and 80 th p his table are so Vhere groundv	percentiles, olely for gro vater is exp	oundwater aquation	(HEV) or achieved. c ecosystems and e waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
FRACTURED ROCK	5 – Toowoomba Region Basalts (cont) weathered (s1)	All						ı	D for all					
FRACTURED ROCK	6 – Lamington Basalt (s1)	All					V	I	D for all					
FRACTURED ROCK	7 – Mount Tamborine (s1)	All						I	D for all					
FRACTURED ROCK	8 – Sunnybank Weathered Basalt Remnants (s1)	All						I	D for all					
FRACTURED ROCK	9 – Northern Basalts (cont) (s1)	All						I	D for all					

AQUIFER Chemistr		Percentile	Note: Except maintained w	(refe	er plans (SOUT GWQ140 Ac of protection/r	TH EAST 1, GWQ1 quatic ec management Ds for indicato	QUEENS 402, GW osystem ntent for grour rs are typically	Q1403, Q water quality waters is high shown as a limit	GROUN GWQ1407 Iality obj gh ecological range of 20 th ,	7, GWQ14 ectives value (HEV), v 50 th and 80 th p	vhere groundercentiles,		should be d (HEV) or achieved.
(Source:	s1)		may not be p should refer t Sources : S1	rotective of su to surface wat : Local datase	urface water ac er EVs and W ets/reporting (a	quatic ecosys QOs tables c applies to all V	tems, includir ontained in se VQOs except	ng groundwate eparate schedu where indicate	r dependent e ule documents ed); S2: ANZG	ecosystems. V s for surface v S	Vhere groundw vaters (includir	ater is exp	ressed to surface cosystem WQC	,
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
FRACTURED	10 - Northeast Mesozoic Volcanics (s1)	All							D for all					
Ë		20 th	58	9	7	10	64	4	0.00	521	61	5.6	11.0	14.0
FRACTURED	11 – Eastern Trap Rocks (s1)	50 th	106	18	14	96	165	14	0.50	1000	113	6.7	88.5	28.0
F.		80 th	327	64	34	265	474	113	1.40	1732	278	7.8	224.0	56.0
FRACTURED ROCK	12 – Western Great Dividing Range (s1)	All						I	D for all					

				(refe	er plans (DWATER 7, GWQ14		VQ1409) ¹∹	3
AQUIFER Chemistry (Source: s	/ zone	Percentile	maintained w Refer to sect may not be p should refer	vithin the naturion 3.2 for det rotective of su	ral range of va ails on compa irface water a er EVs and W	of protection/r triability. WQC tring test wate quatic ecosys 'QOs tables c	nanagement i Os for indicato r quality data tems, includir ontained in se	rs are typically with the WQO g groundwate parate schedu	ndwaters is high shown as a los. Note that the rependent of the documents	gh ecological range of 20 th , he WQOs in t ecosystems. V s for surface v	value (HEV), v 50 th and 80 th p his table are so Vhere groundw	ercentiles, plely for gro ater is exp	undwater aqua	d (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
ED		20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
FRACTURED	13 – Esk Trough Paleozoic	50 th	849	126	226	727	1600	120	1.10	6005	1247	8.0	598.0	ID
FR4	sediments (s1)	80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
FRACTURED ROCK	14 – North eastern Great Dividing Range (s1)	All							D for all					

				(refe	er plans (GWQ140	1, GWQ1	·	Q1403, (SWQ1407	•		VQ1409) ¹∹	\$
AQUIFER Chemistry (Source: s	y zone	Percentile	maintained was Refer to sect may not be pushould refer	vithin the naturition 3.2 for det rotective of suctorial surface wat	ral range of va ails on compa ırface water a er EVs and W	ariability. WQC aring test wate quatic ecosys /QOs tables c	Os for indicator quality data tems, includir ontained in se	rs are typically with the WQO ng groundwate	y shown as a ls. Note that t r dependent oute ale documents	range of 20 th , he WQOs in t ecosystems. V s for surface v	50 th and 80 th p his table are so Vhere groundw	ercentiles, olely for gro vater is exp	undwater aquat	d (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
G		20 th	46	40	23	131	114	3	0.20	648	196	7.0	109.6	29.2
FRACTURED	15 – Cressbrook Creek (s1)	50 th	69	59	34	153	200	10	0.50	975	287	7.5	125.5	38.0
FR/		80 th	122	109	64	179	474	26	14.00	1800	533	8.0	148.0	46.0
FRACTURED ROCK	16 – Northern Granite Outcrops (s1)	All						1	ID for all					

			DRAFT – not g	overnment po	olicy - South E	ast Queensla	nd Groundwat	er Environme	ntal Values ar	nd Water Qua	lity Objectives	<u> </u>		
						SOUT	TH EAST	QUEENS	SLAND -	GROUN	DWATER	RS		
				(refe	er plans	GWQ140	1, GWQ1	402, GW	Q1403, (SWQ140	7, GWQ1	408, GV	VQ1409) 1-3	
				·		Ac	uatic ec	osvstem	water qu	uality obi	iectives	·	,	
AQUIFER Chemistr (Source:	y zone	Percentile	maintained w Refer to sect may not be p	vithin the naturion 3.2 for det protective of su to surface wat	ral range of va tails on compa urface water a ter EVs and W	of protection/r ariability. WQC aring test wate quatic ecosys /QOs tables c	management i Os for indicato er quality data tems, includin ontained in se	ntent for grounts are typically with the WQC g groundwate parate schedu	ndwaters is high shown as a los. Note that the rependent of the documents and the state of the s	gh ecological range of 20 th , he WQOs in t ecosystems. V s for surface v	value (HEV), 50 th and 80 th his table are s Where ground	percentiles, solely for gro water is exp	undwater aquat	d (HEV) or achieved ic ecosystems and e waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
CAIN	OZOIC DEPO	SITS INC	LUDING	SEDIN	MENTS (OVERL	YING TH	IE GRE	AT ART	ESIAN	BASIN	(refer	plan GW	Q1403)
CAINOZOIC DEPOSITS	1 – Petrie Basin (s1)	All							ID for all			-		
CAINOZOIC	2 – Central Tertiary Sediments (s1)	All							ID for all					
CAINOZOIC DEPOSITS	3 – Sediments Overlying Coal Measures (s1)	All			V)	ID for all					
CAINOZOIC DEPOSITS	4 - Amberley Basin (s1)	All							ID for all					
CAINOZOIC DEPOSITS	5 – Beaudesert Beds (s1)	All						1	ID for all					

			TRAFT - NOLG	overnment po	iicy - South E	asi Queensiai	id Groundwat	er Environme	ntai values ar	id vvaler Quai	ity Objectives			
AQUIFER Chemistry (Source: s	/ zone	Percentile	Note: Except maintained w Refer to sect may not be p	(refective indical vithin the naturation 3.2 for detrotective of such consumptions and the such as the	ted, the level of al range of varials on comparing water are EVs and W	SOUT GWQ140 Ac of protection/r ariability. WQC aring test wate quatic ecosys (QOs tables of	TH EAST 1, GWQ1 Juatic economic analogement in the control of th	QUEENS 402, GW Osystem Intent for ground read typically with the WQO g groundwate parate schedules.	Q1403, Q water quandwaters is high y shown as a right of the shown as a right	GROUN GWQ1407 uality obj gh ecological range of 20th, ne WQOs in the cosystems. Very story surface very	DWATER 7, GWQ14 ectives value (HEV), v 50th and 80th p his table are so	where groupercentiles, olely for growater is exp	oundwater aqua	should be ed (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
CAINOZOIC	6 – Duricrust Main Range (s1)	All		ID for all										
CAINOZOIC DEPOSITS	7 – Minor Northern Tertiary Deposits (s1)	All							ID for all					
CAINOZOIC	8 – Northern Tertiary Remnants (s1)	All						1	ID for all					
SI SI		20 th	114	69	77	381	271	10	0.68	1580	531	7.5	307.0	15.8
CAINOZOIC	9 – Sandy Creek Saline Weathered Alluvium (s1)	50 th	280	138	150	445	881	70	4.00	3600	1024	7.8	369.0	29.0
30	Anuvium (51)	80 th	836	266	305	575	2501	278	13.90	7824	1938	8.2	487.8	34.4
OIC	40 11	20 th	58	34	32	310	72	5	0.23	867	229	7.6	296.8	27.0
CAINOZOIC	10 – Minor Weathered Tertiary Deposits (s1)	50 th	113	78	65	506	197	11	3.50	1450	461	7.9	415.0	37.0
O D	20,000.00 (0.)	80 th	252	121	113	656	474	60	13.00	2234	754	8.1	528.4	48.0

			DRAFT – not g	overninent po	nicy - South La	asi Queerisiai	iu Groundwa	ei Environinei	illai values ai	iu vvalei Quai	ity Objectives				
				(refe	er plans (GWQ140	1, GWQ1	QUEENS 402, GW osystem	Q1403, G	SWQ1407	7, GWQ14		VQ1409) ¹-	3	
AQUIFER Chemistry (Source:	y zone	Percentile	maintained w Refer to sect may not be p	vithin the naturion 3.2 for det rotective of su	ral range of va ails on compa urface water ac	riability. WQC ring test wate quatic ecosys	os for indicato r quality data tems, includir	rs are typically with the WQO g groundwate	/ shown as a i s. Note that the r dependent e	range of 20 th , ne WQOs in tl cosystems. V	50 th and 80 th phis table are s Where ground	percentiles, olely for growater is exp	undwater aqua	d (HEV) or achieved. tic ecosystems and ce waters, readers	
			Sources: S1	: Local datase	ets/reporting (a	pplies to all V	VQOs except	where indicate	ed); S2: ANZO	;	1	ı			
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	pН	Alkalinity (mg/L)	SiO ₂ (mg/L)	
LOW	ER GAB AQL	JIFERS AN	ND AQU	DAQUITARDS (refer plan GWQ1407) 124											
AB		20 th	124	28	15	0.00	1100	145	7.5	200.0	13.0				
LOWER GAB	1 – Southeastern Hutton Outcrop (cont) (s1)	50 th	250	66	53	420	368	20	0.80	1780	399	7.9	351.0	20.0	
ΓO	(====, (==)	80 th	509	140	145	585	1035	55	3.90	3806	960	8.2	487.2	30.0	
LOWER GAB	2 – Central Huttons (s1)	All					X	I	D for all						
AB	2 Laidley Creak	20 th	33	39	25	265	39	11	0.20	552	200	7.8	220.8	34.4	
LOWER GAB	3 – Laidley Creek Sandstones (s1)	50 th	81	51	42	430	95	26	1.80	1143	298	8.1	357.0	43.0	
LO		80 th	1561	159	126	724	2230	80	7.50	7884	968	8.3	593.8	47.4	
AB		20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	
LOWER GAB	4 – Southeastern Marburgs (s1)	50 th	747	63	11	285	1100	63	0.60	4100	216	7.9	256.0	ID	
LO		80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	

		L	JRAFT - not g	overnment po	licy - South E	asi Queensia	na Groundwa	ter Environme	ntai values an	d water Qual	ity Objectives			
AQUIFER Chemistry (Source: 9	y zone	Percentile	Note: Except maintained w Refer to secti may not be p	(refe	er plans (ted, the level of th	SOUT GWQ140 Ac of protection/r riability. WQC ring test wate quatic ecosys	TH EAST 1, GWQ1 Juatic ec management in the control of the cont	QUEENS 1402, GW osystem intent for grounding are typically with the WQC ng groundwate	Q1403, G water quendwaters is high y shown as a riss. Note that the	GROUN GWQ1407 Itality obj gh ecological range of 20 th , ne WQOs in the	DWATER 7, GWQ14 ectives value (HEV), v 50th and 80th p is table are so	s 408, GV	oundwater aqua	should be d (HEV) or achieved. tic ecosystems and be waters, readers
			Sources: S1	: Local datase	ets/reporting (a	pplies to all V	VQOs except	where indicate	ed); S2: ANZO	;				
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
AB	5 – South East	20 th	122	10	4	278	110	4	0.05	930	49	7.7	249.6	12.0
LOWER GAB	Walloons (cont) (s1) - MD	50 th	255	43	29	455	265	14	1.00	1350 a	251	8.1	395.0	18.0
LOV		80 th	555	96	91	688	794	51	5.40	2484 a	579	8.4	589.0	31.0
LOWER GAB	6 – Logan Albert Walloons (s1)	All							D for all					
AB	7 – Lockyer Valley	20 th	67	19	18	226	90	5	0.25	642	132	7.4	221.6	20.0
LOWER GAB	Sandstones (s1) - MD	50 th	237	42	64	500	317	14	1.50	1508 a	419	8.0	425.0	32.0
LOV		80 th	1113	81	158	838	1630	58	10.82	3657 a	825	8.3	698.6	45.0
AB	8 – Lockyer Valley	20 th	214	83	124	380	641	20	2.00	3000	696	7.4	326.0	19.0
LOWER GAB	Southern Headwaters (s1, s2) - MD	50 th	495	173	234	482	1380	79	10.6 ANZG	5010	1445	7.6	425.5	32.0
ΓΟ		80 th	820	325	354	787	2156	236	10.6 ANZG	6652	2217	7.9	627.0	40.0

		L	JKAF I — NOLG	overnment po	ilicy - South E	ası Queensiai	iu Groundwai	ei Environme	niai values ar	iu vvater Quai	ity Objectives			
				(refe	er plans			•			DWATER 7, GWQ14		VQ1409) ¹⁻	3
						Aq	uatic ec	osystem	water qu	iality obj	ectives			
AQUIFER Chemistr (Source:	y zone	Percentile	maintained w Refer to sect may not be p should refer	vithin the naturition 3.2 for det rotective of suctorial surface wat	ral range of va ails on compa ırface water a er EVs and W	ariability. WQC aring test wate quatic ecosys /QOs tables co	Os for indicato r quality data tems, includir ontained in se	rs are typically with the WQC g groundwate	y shown as a les. Note that the r dependent of the documents	range of 20 th , he WQOs in the ecosystems. V is for surface w	50 th and 80 th p nis table are so Vhere groundv	percentiles, olely for growater is exp	undwater aqua	ed (HEV) or achieved. tic ecosystems and ce waters, readers
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
AB	2 0 200Kyon												28.0	
LOWER G	Sandstones Recharged Area (s1) - MD	50 th	97	72	78	418	214	13	4.30	1250 a	495	8.0	350.5	38.0
LO		80 th	181	121	127	548	506	68	19.80	1914 a	841	8.2	454.0	45.0
BASA	AL GAB (refe	r plan GW	/Q1408)											
8	1 – Eastern	20 th	239	13	5	373	308	3	ID	1400	65	7.5	366.4	ID
BASAL GAB	Evergreen Outcrop (cont) (s1)	50 th	933	20	12	523	466	11	1.00	2950	85	8.0	447.0	15.0
BA		80 th	1507	89	150	819	1482	32	ID	5524	789	8.4	691.2	ID
8		20 th	180	2	0	336	60	2	0.00	946	7	7.7	315.0	14.5
BASAL GAB	2 – Eastern Central Area (cont) (s1)	50 th	306	3	1	620	108	14	0.25	1260	14	8.3	548.0	20.0
BAS		80 th	397	11	5	684	191	35	1.05	1742	41	8.7	582.2	28.8
AB	3 – Southeastern	20 th	158	10	6	202	165	1	0.00	1047	44	7.4	173.2	14.0
BASAL GAB	Evergreen (cont) (s1)	50 th	397	40	29	454	475	21	0.50	2325	231	7.9	382.0	26.0
BAS		80 th	721	123	87	608	959	69	3.00	3788	672	8.2	537.0	41.2

AQUIFER Chemistry		Percentile	maintained v	t where indica	ted, the level of	GWQ140 Acousting protection/recommendations	1, GWQ1 uatic ec management i s for indicato	402, GW osystem ntent for grounders are typically	Q1403, (water que ndwaters is his y shown as a	GWQ1407 uality obj gh ecological range of 20 th ,	ectives value (HEV), v	vhere groundercentiles,	VQ1409) 1-d	should be d (HEV) or achieved.
(Source:	s1)		may not be p should refer	rotective of su	rface water a er EVs and W	quatic ecosys 'QOs tables c	tems, includir ontained in se	g groundwate parate schedu	r dependent e ule documents	ecosystems. V s for surface w	Vhere groundw	ater is exp		tic ecosystems and be waters, readers Os).
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
8		20 th	34	8	5	37	48	2	0.25	274	41	6.5	38.0	13.0
BASAL GAB	4 - Beuaraba Woogaroo (s1)	50 th	85	22	14	137	110	7	0.25	683	116	7.4	128.0	28.0
BAS		80 th	158	52	39	354	225	13	1.40	1250	289	7.9	310.2	43.0
GAB	5 – Gatton	20 th	119	8	4	447	244	6	0.08	1600	36	7.4	367.4	7.4
AL G	Sandstone Southwestern Headwaters (s1)	50 th	385	26	22	530	337	20	1.10	1850	151	7.9	437.0	11.0
BASAL		80 th	688	101	106	732	621	47	10.00	2920	681	8.4	651.6	20.0
GAB	6 – Gatton	20 th	215	33	17	418	310	10	0.50	2196	167	7.4	360.0	11.0
BASAL G	Sandstone Saline Area (s1) - MD	50 th	532	88	114	592	633	34	2.60	3000 a	711	7.7	494.5	23.0
BAS		80 th	1050	210	270	1310	1862	146	21.00	5100 a	1671	8.0	1066.6	37.0
GAB	7 – Lower Lockyer	20 th	68	43	45	320	110	7	0.25	980	320	7.7	274.6	31.0
AL G	Recharged Area (s1) - MD	50 th	110	73	86	440	287	15	3.00	1400 a	527	8.0	373.0	39.0
BASAL		80 th	217	124	151	583	592	50	18.00	2205 a	911	8.2	495.4	47.0
BASAL GAB	8 – Logan Albert Sandstones (s1)	All						1	ID for all					

			DRAFT – not g	overnment po	licy - South E	ast Queensla	nd Groundwat	er Environme	ntal Values an	d Water Qual	ity Objectives			
AQUIFER Chemistry (Source: 9	y zone	Percentile	maintained w Refer to sect may not be p should refer t	t where indicate within the naturation 3.2 for deterotective of such course water the contractive water water the contractive water wa	ted, the level of al range of va ails on compa rface water ar er EVs and W	GWQ140 Ac of protection/r riability. WQC ring test wate quatic ecosys QOs tables c	1, GWQ1 quatic economic production in the control of the control	402, GW osystem Intent for grounders are typically with the WQC g groundwater parate schedulers.	water quendwaters is high y shown as a ros. Note that the dependent e	gh ecological ange of 20th, ne WQOs in the cosystems. V	ectives value (HEV), value (HEV), value (HEV), value to the solution of the so	where groundercentiles, obley for growater is exping aquatic e	undwater aquat	should be d (HEV) or achieved. ic ecosystems and the waters, readers
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µS/cm)	(mg/L)	pН	(mg/L)	(mg/L)
BASAL GAB	9 – Albert River Woogaroo (s1)	All				1			ID for all					
		20 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
GAB	10 – Clarence Moreton Nambour	50 th	184	19	17	5	394	14	ID	1380	239	5.9	ID	ID
BASAL GAB	Connection (s1)	80 th	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID
		20 th	11	1	2	3	10	2	0.72	119	16	5.1	2.0	8.0
GAB	11 – Nambour Basin (s1, s2) - MD	50 th	22	4	5	23	22	2	10.6 ANZG	192	33	6.0	20.0	12.0
BASAL		80 th	38	19	8	106	44	5	10.6 ANZG	369	84	6.7	90.0	34.4
BASAL GAB	12 – Eudlo Creek Nambour Formation (s1)	All						1	ID for all					

		L	RAFT – not g	overnment po	olicy - South E	ast Queensia	nd Groundwat	ter Environme	ntal Values ar	nd Water Qua	lity Objectives			
			SOUTH EAST QUEENSLAND – GROUNDWATERS (refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409) 1-3											
			Aquatic ecosystem water quality objectives											
						Ac	quatic ec	osystem	water qu	uality ob	jectives			
AQUIFER Chemistry (Source: 9	/ zone	Percentile	maintained w Refer to sect may not be p	Note: Except where indicated, the level of protection/management intent for groundwaters is high ecological value (HEV), where groundwater quality should be maintained within the natural range of variability. WQOs for indicators are typically shown as a range of 20 th , 50 th and 80 th percentiles, to be maintained (HEV) or achieved. Refer to section 3.2 for details on comparing test water quality data with the WQOs. Note that the WQOs in this table are solely for groundwater aquatic ecosystems and may not be protective of surface water aquatic ecosystems, including groundwater dependent ecosystems. Where groundwater is expressed to surface waters, readers should refer to surface water EVs and WQOs tables contained in separate schedule documents for surface waters (including aquatic ecosystem WQOs).										
			Sources: S1	Sources: S1: Local datasets/reporting (applies to all WQOs except where indicated); S2: ANZG										
			Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO₄ (mg/L)	NO₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
BASAL GAB	13 – Kin Kin Beds (s1)	All		ID for all										
BASAL GAB	14 – Noosa River Sandstone (s1)	All							ID for all					
BASAL GAB	15 – Tarong Basin (s1)	All						>	ID for all					
BASAL GAB	16 – Southern Moreton Bay and Barrier Islands (s1)	All							ID for all					

			JRAFT – not g	overnment po	olicy - South E	asi Queensia	na Groundwai	er Environme	ntai vaiues ai	nd vvater Qua	lity Objectives				
			SOUTH EAST QUEENSLAND – GROUNDWATERS												
				(refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409) ¹-₃											
			Aquatic ecosystem water quality objectives Note: Except where indicated, the level of protection/management intent for groundwaters is high ecological value (HEV), where groundwater quality should be												
AQUIFER	CLASS														
Chemistry	y zone	Percentile	maintained v	Note: Except where indicated, the level of protection/management intent for groundwaters is high ecological value (HEV), where groundwater quality should be maintained within the natural range of variability. WQOs for indicators are typically shown as a range of 20 th , 50 th and 80 th percentiles, to be maintained (HEV) or achieved Refer to section 3.2 for details on comparing test water quality data with the WQOs. Note that the WQOs in this table are solely for groundwater aquatic ecosystems and											
(Source: s1)			may not be p	rotective of su	ırface water a	quatic ecosys	tems, includin	g groundwate	r dependent e	ecosystems. V	Vhere ground	water is exp	ressed to surface	e waters, readers	
				should refer to surface water EVs and WQOs tables contained in separate schedule documents for surface waters (including aquatic ecosystem WQOs).											
				Na Ca Mg HCO ₃ CI SO ₄ NO ₃ EC Hardness Alkalinity SiO ₂											
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µS/cm)	(mg/L)	pН	(mg/L)	(mg/L)	
EADI	IED DACING	DADTIAL	IVIINIT	EDIVI	IC THE	CAP /r	ofor pla	n GWO	1400)						
EARL	IER BASINS	PARTIAL	LIUNL	EKLIII	IGINE	GAD (I	eiei pia I	II GWQ	1409)	1					
		20 th	161	16	16	44	183	14	0.05	1105	123	5.9	75.2	25.0	
ш															
3 GA	1 – Logan Coal Measures (s1)	50 th	284	49	29	235	482	58	0.60	2150	307	7.1	244.0	35.0	
NDEF															
Π		80 th	1506	128	164	395	2814	250	2.50	8940	892	7.6	343.4	55.0	
ART	2 – Brisbane Coal														
RS	Bearing Beds	All]	D for all						
BASI															
ER	3 – Ipswich Coal Deposits	All						1	D for all						
EARLIER BASINS PARTLY UNDER GAB	Doposite														
	4 – Kholo														
	Sediments and Volcanics	All						1	D for all						
	Maintain/achieve effectively unmodified water quality (20th, 50th and 80th percentiles of HEV waters), habitat, biota, flow and riparian areas.														
Springs - There is insufficient information available to establish aquatic ecosystem water quality objectives for these waters. I						·		o establish a							
1 3			minimum wa	ter quality data	a set for derivi	ing local 20th,	50th and 80th	n percentiles.							

		KAFT – HOLG	overninent po	ilicy - South E	ası Queensiai	iu Groundwa	ei ciiviioiime	itai values ar	nd Water Qua	iity Objectives			
		SOUTH EAST QUEENSLAND – GROUNDWATERS											
		(refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409) ¹-₃											
					Ac	uatic ec	osystem	water qu	uality obj	jectives			
AQUIFER CLASS Chemistry zone (Source: s1)	Percentile	maintained w Refer to secti may not be p	rithin the natur ion 3.2 for det rotective of su	ral range of va ails on compa ırface water a	ariability. WQC aring test wate quatic ecosys	Os for indicato r quality data tems, includir	rs are typically with the WQC og groundwate	shown as a s. Note that to dependent of	range of 20 th , he WQOs in t ecosystems. V	50 th and 80 th phis table are so Where ground	percentiles, olely for gro water is exp	oundwater aqua	d (HEV) or achieved. tic ecosystems and ce waters, readers
		Sources: S1: Local datasets/reporting (applies to all WQOs except where indicated); S2: ANZG											
		Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO₂ (mg/L)
			TOXICANTS (INCLUDING METALS, BIOCIDES) uatic ecosystem toxicant WQOs are as defined below, based on relevant sources. Their adoption should not be interpreted as upper limits to which groundwater ntaminant concentrations can be increased. Rather, if existing groundwater quality concentrations are below the adopted water quality guideline values, the nundwater should be maintained within the range of natural quality variations established through baseline characterisation (DES 2021; Australian Government 2013).										
		contaminant											
			ates to aquation				use EVs (irrig	ation, stock w	atering, recre	ational use, et	c.) are sum	marised in secti	on 4 of this document
HEV groundwaters (all aquifers other than specified below): Toxicants	HEV	o AN	ZĠ (2018) to: e following so: ote: the ANZG Biocides: Ki	xicant default urces, where t specifies the ng et al (2017	guideline valu heir guideline date of guidel , as amended	values post- ine developm b) (vol 1 and 2	ent for each to	tic ecosystem ied ANZG gui oxicant): uatic ecosyst	is', as amende ideline value, tem protection	or where there		G value specifie	d for a toxicant ly used in the Great
(s2)		 Toxicant 	ts in sediment	s: refer to ANZ	ZG 'toxicant d	efault guidelir	e values for s	ediment quali	ty'				
Groundwaters not identified as HEV Toxicants (s2)	SMD/MD	Toxicant Ref toxi Toxicant Note: adoptic quality conce	Toxicants in sediments: refer to ANZG 'toxicant default guideline values for sediment quality' Toxicants (including metals, biocides) in water: Refer to 95% species protection values contained in sources below. Note: refer to 99% species protection values where indicated by ANZG (including for toxicants with bioaccumulation, toxicity effects): ANZG (2018) 'toxicant default guideline values for water quality in aquatic ecosystems', as amended The following sources, where their guideline values post-date the specified ANZG guideline value, or where there is no ANZG value specified for a toxicant (Note: the ANZG specifies the date of guideline development for each toxicant) Biocides: King et al (2017, as amended) (vol 1 and 2) Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area (available from Queensland Government publications) Toxicants in sediments: refer to ANZG 'toxicant default guideline values for sediment quality' te: adoption of the above should not be interpreted as upper limits to which groundwater contaminant concentrations can be increased. Rather, if existing groundwater ality concentrations are below the adopted water quality guideline values, the groundwater should be maintained within the range of natural quality variations ablished through baseline characterisation (DES 2021; Australian Government 2013).										

AQUIFER CLASS Chemistry zone (Source: s1)	Percentile	SOUTH EAST QUEENSLAND – GROUNDWATERS (refer plans GWQ1401, GWQ1402, GWQ1403, GWQ1407, GWQ1408, GWQ1409) 1–3 Aquatic ecosystem water quality objectives Note: Except where indicated, the level of protection/management intent for groundwaters is high ecological value (HEV), where groundwater quality should be maintained within the natural range of variability. WQOs for indicators are typically shown as a range of 20 th , 50 th and 80 th percentiles, to be maintained (HEV) or achieved. Refer to section 3.2 for details on comparing test water quality data with the WQOs. Note that the WQOs in this table are solely for groundwater aquatic ecosystems and may not be protective of surface water aquatic ecosystems, including groundwater dependent ecosystems. Where groundwater is expressed to surface waters, readers should refer to surface water EVs and WQOs tables contained in separate schedule documents for surface waters (including aquatic ecosystem WQOs). Sources: S1: Local datasets/reporting (applies to all WQOs except where indicated); S2: ANZG											
		Na (mg/L)	Ca (mg/L)	Mg (mg/L)	HCO₃ (mg/L)	CI (mg/L)	SO ₄ (mg/L)	NO ₃ (mg/L)	EC (μS/cm)	Hardness (mg/L)	рН	Alkalinity (mg/L)	SiO ₂ (mg/L)
					STATE	PLANN	ING PO	LICY, R	IPARIAI	N, WETI	LANDS	3	
State Planning Policy	all	Refer to	section 3.3										
Riparian	all	Refer to	Refer to separate schedule documents for SEQ surface waters										
Wetlands	all	Refer to	Refer to separate schedule documents for SEQ surface waters										

Abbreviations: ANZG – Australian and New Zealand guidelines for fresh and marine water quality; QWQG – Queensland water quality guidelines; ID – insufficient data. Will be updated if information becomes available; HEV – high ecological value; SD – slightly disturbed; MD – moderately disturbed.

Indicators: Na – sodium; Ca – calcium; Mg – magnesium; HCO₃ – bicarbonate; Cl – chloride, SO₄ – sulfate; NO₃ – nitrate ion; EC – electrical conductivity, SiO₂ – silica

Units: mg/L – milligrams per litre, µS/cm – microsiemens/centimetre

Notes:

- 1. Management intent/ percentiles: Except where noted otherwise, the intent for groundwaters is that groundwater quality is maintained within the natural range of variability (further details in note 2 below), reflecting high ecological value (HEV) This is applied in the table for aquifer and chemistry zone by provision of 20th, 50th and 80th percentiles of water quality data, while the range of 20th, 40th and 70th percentiles is adopted for any indicators where the report *Groundwater chemistry zones in South East Queensland* identified trends in relevant indicators (marked in cells with "a"). Refer DES (2023) technical report for more details. For some indicators (e.g. toxicants), source technical guidelines use a 'slightly to moderately disturbed' (SMD) level of protection. This document and accompanying mapping include these within the MD level of protection. In some groundwaters aquatic ecosystem WQOs for nitrate are set to at least maintain water quality or, where water quality exceeds ANZG guidelines, to achieve the 95% species protection guideline values under ANZG (marked in cells with 'ANZG 10.6', based on ANZG value of 10.6 mg/L (equivalent to 2.4 mg/L NO₃-N) at time of publication. Note ANZG is periodically updating toxicants guidelines including NO₃ and readers should refer to latest available information from the ANZG (These are identified as moderately disturbed (MD).
- 2. Groundwaters management national policy: extracts from the following national groundwater sources provide policy guidance on the management of groundwater and derivation of local objectives based on local data:

Guidelines for groundwater quality protection in Australia: 'The national application of the guidelines will enable management of groundwater quality of aquifers, as well as their connected surface water systems, across traditional management boundaries. Groundwater quality protection also applies to groundwater that extends under coastal waters.' (2013; 5). 'Protection of groundwater quality is imperative to ensure the

protection of healthy ecosystems and maintenance of environmental values as well as for future economic and population growth' (2013; 1).' The guidelines also note that 'In some circumstances, the natural groundwater quality will exceed some of the water quality guideline values for the agreed environmental value category. In this case, the groundwater quality should be maintained within the natural range of variability. This approach would require a detailed baseline assessment to establish natural groundwater quality and variability upon which the water quality objectives and guideline values can be based.' (2013; 20).

ANZG Application of the Water Quality Guidelines to groundwater: 'groundwater should be managed in such a way that when it comes to the surface, whether from natural seepages or from bores, it will not cause the established water quality objectives for these waters to be exceeded, nor compromise their designated community values. In addition to this, underground aquatic ecosystems and any novel fauna also need to be protected. Relatively little is still known of the lifecycles and environmental requirements of groundwater communities. Where potentially high conservation values are identified, the groundwater upon which the communities depend should be afforded the highest level of protection, at least until further knowledge is gained. Basing groundwater quality objectives on data from groundwater reference condition locations is recommended to achieve this protection. It is important to note that different biological, physical and chemical conditions and processes operate in groundwater compared with surface waters, and these can affect the fate and transport of many chemicals. This may have implications for the application of guideline values and overall management of groundwater quality.'

The GAB strategic management plan provides a framework achieve economic, environmental, cultural and social outcomes for the Great Artesian Basin (the Basin) and its users. 'The Plan envisages that scientifically defensible limits relating to both quantity of water take and water quality will be established and adhered to' and includes a strategic outcome to 'set out scientifically defensible water quality limits and extraction impact management measures that minimise impacts on the Basin resources, its users and dependent ecosystems'.

3. In relation to Stygofauna, Hose et al. note that: Stygofauna are generally adapted to stable environmental conditions, including water quality. Changes to water quality that are beyond the range of conditions normally experienced by stygofauna pose a threat to their survival.' (2015; 40); 'Importantly, it is changes to pH away from the typical background level that are likely to be problematic for stygofauna, as they are for other freshwater invertebrates.... thus requiring understanding the local conditions in order to assess the risks associated with changed in water quality.' (Hose et al., 2015; 42). For salinity 'Field studies...suggest that the salinity tolerance of most stygofauna is limited to salinity level (measured by water electrical conductivity) less than 5000 µS/cm.... It might be expected then that changes to salinity of groundwater above 5000 µS/cm may by (sic) toxic to stygofauna. However, this threshold does not indicate the sensitivity of stygofauna to changes in salinity; those inhabiting and adapted to relatively fresh groundwater will be potentially sensitive to changes well below this level. It is likely that stygofauna are adapted to local conditions so that changes from background salinity could be deleterious.' (Hose et al., 2015; 41)

Sources / references:

ANZG (2018, as amended) Australian and New Zealand guidelines for fresh and marine water quality.

Australian Government (2020) Great Artesian Basin strategic management plan

Australian Government (2013) Guidelines for groundwater quality protection in Australia: National Water Quality Management Strategy, Department of Agriculture and Water Resources, Canberra, March. CC BY 3.0.

Department of Environment and Heritage Protection (2009) Queensland Water Quality Guidelines, Version 3, ISBN 978-0-9806986-0-2 (republished July 2013).

Department of Environment and Science (2023) Groundwater chemistry zones in South East Queensland: Draft environmental values and water quality chemistry ranges. Brisbane: Department of Environment and Science, Queensland Government

Department of Environment and Science (2022) Guideline: Environmental Protection (Water) Policy 2019 - Deciding aquatic ecosystem indicators and local water quality guidelines. March.

Department of Environment and Science (2021). Using monitoring data to assess groundwater quality and potential environmental impacts. Version 2. Queensland Government, Brisbane

Hose GC, J Sreekanth, Barron O, Pollino C, 2015 Stygofauna in Australian Groundwater Systems: Extent of knowledge. CSIRO, Australia

King et al (2017, as amended) Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area (Parts 1 and 2). Department of Environment and Science. Brisbane, Queensland, Australia (available from Queensland Government publications)

Unpublished water quality datasets

3.2 Comparison of test data with water quality objectives

The following protocols are recommended when comparing groundwater quality (at a 'test' site) with the corresponding groundwater aquatic ecosystem water quality objective (WQO). The management intent for all groundwaters corresponds to an HEV level of protection, namely that there should be 'no change' to existing water quality, i.e. no change in the natural range of values (except in circumstances where water quality is modified and improvement is sought in relevant parameters). No change is deemed to have occurred if there are no detectable changes to the 20th, 50th and 80th percentiles of the natural distribution of values (or no change to the 50th percentile where there is insufficient data to derive a range of WQOs). A summary of procedures for comparing test data with WQOs is provided below and detailed methods are provided in the QWQG.

- Where the WQO is expressed as a 20th–50th–80th percentile range of values to be maintained (e.g. Total N: 65–100–125 μg/L), the 20th–50th–80th percentile distributions of the test data should meet the specified range of values. The sample number is a minimum of 24 test values over the relevant period (12 months if a continuous activity or alternatively a shorter period for activities where discharge occurs for only part of the year).
- Where, due to data limitations, the WQO is expressed as a single figure (50th percentile) value, the same comparison (i.e. with minimum 24 samples) is made.

For toxicants in water: unless otherwise stated, WQOs for toxicants are derived from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018) default guideline values for the corresponding level of species protection. The ANZG recommends that the 95th percentile of test data is compared against the default guideline value. As the proportion of test values that is required to be less than the default guideline value is high, the ANZG indicates that a single observation greater than the default guideline value is considered an exceedance.

For comparisons of toxicants in sediments, refer to ANZG.

Further information: Refer to the QWQG, the Queensland Monitoring and Sampling Manual (2018), and ANZG for more details.

3.3 State planning policy – (state interest – water quality)

The State Planning Policy (SPP) defines the Queensland Government's policies about matters of state interest in land use planning and development (a state interest is defined under the *Planning Act 2016*).

Water quality is a state interest. The SPP (state interest – water quality) seeks to ensure that 'the environmental values and quality of Queensland waters are protected and enhanced'. It includes provisions relating to receiving waters, acid sulfate soils and water supply buffer areas.

The provisions of the SPP are applied through their 'integration' into local government planning schemes. Planning schemes adopt measures prescribed in the SPP that ensure development is planned, designed, constructed and operated to manage stormwater and wastewater in ways that support the protection of environmental values and meet the water quality objectives identified in the Environmental Protection (Water and Wetland Biodiversity) Policy 2019.

This is achieved by compliance with the policy provisions of the SPP (state interest – water quality).

Stormwater management design objectives for construction include developments using measures to manage the velocity of stormwater flows and prevent erosion, sediment, litter and other contaminants entering waterways while construction is occurring. Post construction stormwater management design objectives generally apply to lots over 2500m² that results in six or more dwellings or lots. The objectives seek to limit the amount of nutrients and litter, including nitrogen, phosphorus and suspended sediments, entering waterways from the operation of the development.

The SPP (state interest – water quality), policy 6 requires:

'Policy (6) Development in water resource catchments and water supply buffer areas avoids potential adverse impacts on surface waters and groundwaters to protect drinking water supply environmental values."

The SPP is supported by guidance materials which include Integrating state interests in a planning scheme – guidance for local governments (by Department of State Development, Infrastructure, Local Government and Planning). These and other SPP materials are available from the State Planning Policy website. Supplementary guidance is available from the Department of Environment and Science website on post construction phase stormwater management (phase 5b).

WATER QUALITY OBJECTIVES for HUMAN USE ENVIRONMENTAL VALUES

4 Water quality objectives for human use environmental values (EVs)

This section outlines water quality objectives (WQOs) to protect human use environmental values (EVs), other than the aquatic ecosystem EV. Section 2 of this document outlines the EVs that have been identified for different groundwaters. For surface waters of South East Queensland, refer to separate documents under schedule 1 of the EPP (Water and Wetland Biodiversity), available from the Department's website. Where a human use EV has been identified in section 2 of this document for groundwater, the following tables can be used to identify the corresponding WQOs to support that EV. Where more than one EV applies to a given water, the adoption of the most stringent WQO for each water quality indicator will then protect all identified EVs. Note that human use WQOs tables in this section are provided for all potentially applicable human use EVs. As the range of human use EVs varies by water, reference to section 2 is required to firstly identify the human use EVs stated for a particular water, from which the corresponding human use WQOs in this section can then be identified.

Where human use WQOs in this section call up relevant national water quality guidelines, reference to these is necessary to obtain comprehensive listings of all indicators and corresponding WQOs. Note that additional requirements, including those relating to recycled water (e.g. for drinking water and irrigation) also exist, and are addressed under the *Public Health Act 2005*, Public Health Regulation (2018) and *Water Supply (Safety and Reliability) Act 2008*. Further information, including guideline on low exposure recycled water schemes, is available from the Queensland Health and Business Queensland websites.

4.1 Human use EVs water quality objectives

The following table summarises WQOs for human use EVs. More details are provided in subsequent sections by human use EV.

Table 4 Human use EVs water quality objectives

Environmental value	Water type/area ¹	Water quality objective to protect EV (refer to specified codes and guidelines for full details)
Suitability for irrigation	Groundwaters	As per the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) published on the Australian Government's Water Quality Australia website, and Australia New Zealand Food Standards Code, Food Standards Australia New Zealand, as amended
		Notes re water quality for irrigation:
		 ANZG irrigation water quality guidelines are subject to periodical review, and readers should refer to the ANZG website for the most up-to-date version.
		the irrigation EV pertains to water suitability for irrigation with regard to criteria such as maintaining soil quality, plant phytotoxicity, minimisation of toxic metal update into food crops, and impact on farm infrastructure.
		 irrigation values are not set to account for effects on aquatic ecosystems in source waters, or human health impacts of contact with the water. For these, reference should be made to relevant WQOs for aquatic ecosystem protection, and WQOs for other human use EVs elsewhere in this document. For safety of food for human consumption, refer to Food Standards Australia New Zealand
		this table relates to water sourced from Queensland waters, rather than a potable water source or from a treated effluent source: requirements relating to recycled water are addressed under the Public Health Act 2005, Public Health Regulation (2018) and Water Supply (Safety and Reliability) Act 2008. Further information on recycled water is available from the Queensland Health and Business Queensland websites.
		 specific guidelines for irrigation of public spaces with water sourced from Queensland waters are not available, though guidance on microbial quality and managing risks can be taken from the 'Guideline for low-exposure recycled water schemes' (available from the Queensland Health website).

Environmental value	Water type/area ¹	Water quality objective to protect EV (refer to specified codes and guidelines for full details)
Suitability for farm	Groundwaters	As per ANZG.
supply/use		Notes re water quality for farm supply/use:
		ANZG irrigation water quality guidelines (which include advice on general farm use) are subject to periodical review, and readers should refer to the ANZG website for the most up to date version.
		Also refer to Safe Water on Rural Properties (Queensland Health, 2015)
Suitability for stock	Groundwaters	As per ANZG.
watering		Notes re water quality for stock watering:
		ANZG stock water quality guidelines are subject to periodical review, and readers should refer to the ANZG website for the most up to date version.
		ANZG applicable to both groundwater and surface provided for livestock drinking water commonly found in Australia (including sheep, cattle, horses, pigs and poultry).
		water quality includes biological, chemical and radiological characteristics that may affect animal health.
Suitability for	Groundwaters	As per:
aquaculture		Tables 5–7 of this document (Queensland information
		 ANZG and Australia New Zealand Food Standards Code, Food Standards Australia New Zealand, as amended
Protection of the human consumer	Groundwaters	As per ANZG and Australia New Zealand Food Standards Code, Food Standards Australia New Zealand, as amended.
Suitability for primary contact	Groundwaters	As per Guidelines for Managing Risks in Recreational Water (NHMRC). Also refer to Safe Water on Rural Properties (Queensland Health, 2015)
recreation		Notes re water quality for recreation:
		NHMRC recreational water guidelines are subject to periodical review, and readers should refer to the NHMRC website for the most up to date version.
		NHMRC provides a risk management-based framework for monitoring, assessing, managing and auditing water quality for recreational activities.
		the NHMRC addresses water quality requirements for recreational activity under the following categories:
		 physical hazards (floating and submerged objects, water visibility)
		 temperature microbial quality (virus, parasites, bacteria - including faecal
		contamination from human or animal sources)
		o cyanobacteria (blue-green algae)
		o algae
		 contact with dangerous/venomous organisms chemicals toxic or irritating to skin or mucous membranes
		pH, and other physico-chemical indicators
		 aesthetic aspects including water transparency, litter, oils/films, scums, odour
Suitability for secondary contact	Groundwaters	As per Guidelines for Managing Risks in Recreational Water (NHMRC). Also refer to Safe Water on Rural Properties (Queensland Health, 2015).
recreation		Notes re water quality for recreation:
		NHMRC recreational water guidelines are subject to periodical review, and readers should refer to the NHMRC website for the most up to date version
		refer to comments under primary recreation for scope of water quality issues covered by NHMRC.

Environmental value	Water type/area ¹	Water quality objective to protect EV (refer to specified codes and guidelines for full details)
Suitability for visual recreation	Groundwaters	As per Guidelines for Managing Risks in Recreational Water (NHMRC). Also refer to Safe Water on Rural Properties (Queensland Health, 2015).
		Notes re water quality for recreation:
		NHMRC recreational water guidelines are subject to periodical review, and readers should refer to the NHMRC website for the most up to date version
		recreational water bodies should be aesthetically acceptable to recreational users. The water should be free from visible materials that may settle to form objectionable deposits; floating debris, oil, scum and other matter; substances producing objectionable colour, odour, taste or turbidity; and substances and conditions that produce undesirable aquatic life.
		Refer to comments under primary recreation for scope of water quality issues covered by NHMRC
Suitability for drinking water	Groundwaters	The Australian Drinking Water Guidelines (NHMRC) provides a framework for catchment management and source water protection for drinking water supplies.
supply		Note: For water quality after treatment or at point of use refer to legislation and guidelines, including:
		Public Health Act 2005 and Regulation (2018)
		Water Supply (Safety and Reliability) Act 2008, including the relevant drinking water quality management plan and, where applicable, the recycled water management plan for augmenting a drinking water supply under the Act and the published Drinking Water Quality Management Plan Guideline
		Water Fluoridation Act 2008 and Regulation (2020)
		Australian Drinking Water Guidelines (NHMRC)
		Safe Water on Rural Properties (Queensland Health, 2015)
		Quality of raw water (prior to treatment) should consider the requirements of water supply operators, and their capacity to treat the water to make it safe for human consumption. Also refer to Table 8.
		Whether water is drawn from surface catchments or underground sources, it is important that the local catchment or aquifer is understood, and that the activities that could lead to water contamination are identified and managed. See the <i>State Planning Policy 2017</i> and the interactive mapping system for assessment benchmarks around development in water supply buffer areas. Effective catchment management and source water protection include development of a catchment management plan, with the commitment of land use planning authorities to prevent inappropriate development and to enforce relevant planning regulations.
Suitability for industrial use	Groundwaters	None provided. Water quality requirements for industry vary within and between industries. The ANZG do not provide guidelines to protect industries, and indicate that industrial water quality requirements need to be considered on a case-by-case basis. This EV is usually protected by other values, such as the aquatic ecosystem EV.
Protection of cultural and spiritual values	Groundwaters	Protect or restore indigenous and non-indigenous cultural heritage consistent with relevant policies and plans. The ANZG provides further context on how guidelines for other EVs can contribute to water quality for cultural and spiritual values.

Notes:

 This table is focussed on groundwaters. For surface waters of South East Queensland, refer to separate documents under schedule 1 of the EPP (Water and Wetland Biodiversity), available from the Department's website.

Sources:

The WQOs were determined from a combination of sources, including:

- Technical review and advice from Queensland Department of Agriculture and Fisheries, SEQwater, Queensland Health and Department of Regional Development, Manufacturing and Water (2020-2023)
- Australian Drinking Water Guidelines (NHMRC, 2011, as amended).
- Australia New Zealand Food Standards Code (Australian Government: Food Standards Australia New Zealand), available from Food Standards Australia New Zealand website

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018, as amended)
- Guidelines for Managing Risks in Recreational Water (NHMRC, 2008, as amended).
- Safe Water on Rural Properties (Queensland Health, 2015)

4.2 Aquaculture EV water quality objectives

The following tables outline WQOs for aquaculture, depending on water type and species.

Table 5 Aquaculture EV: General water quality objectives for tropical aquaculture

Water parameter	Recommer	nded range	Water parameter	Recommended range
	Fresh water	Marine		General aquatic
Dissolved oxygen	>4 mg/L	>4 mg/L	Arsenic	<0.05 mg/L
Temperature	21–32°C	24-33°C	Cadmium	<0.003 mg/L
рН	6.8–9.5	7–9.0	Calcium/Magnesium	10–160 mg/L
Ammonia (TAN, total ammonia- nitrogen)	<1.0 mg/L	<1.0 mg/L	Chromium	<0.1 mg/L
Ammonia (NH ₃ , un-ionised form)	<0.1 mg/L	<0.1 mg/L	Copper	<0.006 mg/L in soft water
Nitrate (NO ₃)	1–100 mg/L	1–100 mg/L	Cyanide	<0.005 mg/L
Nitrite (NO ₂)	<0.1 mg/L	<1.0 mg/L	Iron	<0.5 mg/L
Salinity	0–5 psu	15–35 psu	Lead	<0.03 mg/L
Hardness	20–450 mg/L	ID	Manganese	<0.01 mg/L
Alkalinity	20–400 mg/L	>100 mg/L	Mercury	<0.00005 mg/L
Turbidity	<80 NTU	ID	Nickel	<0.01 mg/L in soft water <0.04 mg/L in hard water
Chlorine	<0.003 mg/L	ID	Tin	<0.001 mg/L
Hydrogen sulphide	<0.002 mg/L	ID	Zinc	0.03–0.06 mg/L in soft water 1–2 mg/L in hard water

Indicator: psu - practical salinity unit, NTU - nephelometric turbidity units, ID - Insufficient data

Note: The table provides indicative water requirements for a range of aquaculture species (fresh and/or marine), recognising that not all listed species will occur in a given area, and that potential exists for changes in species under culture.

Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended) and DAF 2019-2020 technical review and advice.

Table 6 Aquaculture EV: Water quality objectives for optimal growth of particular freshwater species

WATER QUALITY TARGET VA	ALUES FOR AQ	UACULTURE				
Water parameter	Barramundi	Eel	Silver perch	Jade perch	Sleepy cod	Red-claw
Dissolved oxygen	4–9 mg/L	>3 mg/L	>4 mg/L	>3 mg/L	>4.0 mg/L	>4.0 mg/L
Temperature	26–32°C	23–28°C	23–28°C	23–28°C	22–31°C	23–31°C
рН	7.5–8.5	7.0–8.5	6.5–8.5	6.5–8.5	7.0–8.5	7.0–8.5
Ammonia (TAN, Total ammonia–nitrogen)	ID	<1.0 mg/L	ID	ID	<1.0 mg/L	<1.0 mg/L
Ammonia (NH ₃ , un–ionised form)	<0.46 mg/L	<0.1 mg/L	<0.1 mg/L	<0.1 mg/L	<0.1 mg/L	<0.1 mg/L
Nitrate (NO ₃)	ID	ID	<100 mg/L	ID	ID	ID
Nitrite (NO ₂)	<1.5 mg/L	<1.0 mg/L	<0.1 mg/L	ID	<1.0 mg/L	<1.0 mg/L
Salinity (extended periods)	0–35 psu	ID	<5 psu	<5 psu	ID	<4 psu
Salinity bath (short term treatment)	0–35 psu	ID	5–10 psu for 1 hour	ID	max. 20 psu for 1 hour	ID
Hardness (CaCO ₃)	50-100 mg/L	ID	>50 mg/L	>50 mg/L	>40 mg/L	>40 mg/L
Alkalinity	>50 mg/L	ID	100–400 mg/L	100–400mg/L	>40 mg/L	>40 mg/L
Chlorine	<0.04 mg/L	ID	ID	ID	<0.04 mg/L	ID
Hydrogen sulphide	<0.3 mg/L	ID	ID	ID	<0.3 mg/L	ID
Iron	<0.1 mg/L	ID	<0.5 mg/L	<0.5 mg/L	<0.1 mg/L	<0.1 mg/L
Spawning temperature	marine	ID	23–28	23–28	>24 for more than 3 days	ID

Indicator: psu - practical salinity unit, ID - Insufficient data

Note: The table provides indicative water requirements for a range of aquaculture species (fresh and/or marine), recognising that not all listed species will occur in a given area, and that potential exists for changes in species under culture.

Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended) and DAF 2019-2020 technical review and advice.

Table 7 Aquaculture EV: Water quality objectives for optimal growth of particular marine species

Water parameter	Barı	ramundi		rawn (Penaeus odon)
	Hatchery	Grow out	Hatchery	Grow out
Dissolved oxygen	saturation	>4 mg/L	>4 mg/L	>3.5 mg/L
Temperature	28–30°C optimum 25–31°C range	28–30°C optimum	28-30°C	26–32°C
pH	approx. 8	approx. 8	7.8-8.2	7.5–8.5
Ammonia (TAN, total ammonia-nitrogen)	ID	0.1–0.5 mg/L	ID	<3 mg/L
Ammonia (NH ₃ , unionised form)	<0.1 mg/L	<0.1 mg/L	<0.1 mg/L	<0.1 mg/L
Nitrate (NO ₃)	<1.0 mg/L	<1.0 mg/L	<1.0 mg/L	<1.0 mg/L
Nitrite (NO ₂)	<0.2 mg/L	<1.0 mg/L	<0.2 mg/L	<0.2 mg/L
Salinity	28–31psu	0–35psu	30-35psu	10–25 psu optimum
Alkalinity	ID	105–125 mg/L CaCO ₃	ID	>80 mg/L
Clarity	ID	<10mg/L	ID	30–40cm secchi disk
Hydrogen sulphide	ID	<0.3 mg/L	<0.1 mg/L	<0.1 mg/L
Iron	ID	<0.02 mg/L	<1 mg/L	<1.0 mg/L
Spawning temperature	ID	28–32°C	ID	27–32°C

Indicator: psu – practical salinity unit, ID – Insufficient data

Note: The table provides indicative water requirements for a range of aquaculture species (fresh and/or marine), recognising that not all listed species will occur in a given area, and that potential exists for changes in species under culture.

Source: Department of Primary Industries and Fisheries—Water Quality in Aquaculture—DPI Notes April 2004 (as amended) and DAF 2019-2021 technical review and advice.

4.3 Drinking water EV water quality objectives

Table 8 outlines WQOs for drinking water **before treatment**, unless otherwise stated. For water quality after treatment or at the point of use, refer to relevant legislation and guidelines, including *Public Health Act 2005* and Regulation, *Water Supply (Safety and Reliability) Act 2008 and* Regulation, including any approved drinking water management plan under the Act, *Water Fluoridation Act 2008*, the Australian Drinking Water Guidelines (NHMRC), and the Safe Water on Rural Properties guideline (Queensland Health, 2015).

Table 8 Drinking water EV: Priority water quality objectives for groundwater drinking water supply before treatment (except where noted: refer ADWG and relevant legislation for post-treatment)

Indicator	Water quality objective
Giardia	0 cysts/10L. No ADWG guideline value set due to the lack of a routine method to identify human infectious strains in drinking water. A multiple barrier approach from catchment to tap is recommended to minimise the risk of <i>Giardia</i> contamination. Protection of catchments from human and animal wastes is a priority. Operation of barriers should be monitored to ensure effectiveness (ADWG).
	If <i>Giardia</i> is detected in treated drinking water then the Water Supply Regulator, DRDMW must and Queensland Health should be notified immediately and an investigation of the likely source of contamination undertaken.
Cryptosporidium	0 oocysts/10L. No ADWG guideline value set due to the lack of a routine method to identify human infectious strains in drinking water. A multiple barrier approach from catchment to tap is recommended to minimise the risk of <i>Cryptosporidium</i> contamination. Protection of catchments from human and animal wastes is a priority. Operation of barriers should be monitored to ensure effectiveness (ADWG).
	If <i>Cryptosporidium</i> is detected in treated drinking water then the Water Supply Regulator, DRDMW must and Queensland Health should be notified immediately and an investigation of the likely source of contamination undertaken.
E. coli	<50cfu/100mL. Well designed treatment plants with effective treatment barriers and disinfection are designed to address faecal contamination. <i>E. coli</i> or thermotolerant coliforms should not be present in any 100 mL sample of (treated) drinking water (ADWG). <1 cfu/100ml (Public Health Regulation 2018) and upstream sewage effluent discharges need to be known (catchment management). If <i>E. coli</i> is detected in treated drinking water, the Water Supply Regulator, DRDMW must and Queensland Health should be notified immediately and an investigation of the likely source of contamination undertaken.
Hardness	<200 mg/L as CaCO3 (aesthetic)
Taste and Odour	<5 ng/L combine MIB and Geosmin
Total Phosphorus	<0.05 mg/L
Total Nitrogen	<0.5 mg/L
Ammonia	<0.5 mg/L
Nitrate	<10 mg/L
Specific Conductivity	<450 μS/cm
Dissolved Organic Carbon	<10 mg/L
Total Suspended Solids	<25 mg/L

DRAFT - not government policy - South East Queensland Groundwater Environmental Values and Water Quality Objectives

Indicator	Water quality objective
Colour	<50 Hazen Units
Sodium	Refer ADWG, including advice for general and medical (at risk) populations. ADWG notes that 50 mg/L is a 'typical value' in reticulated supplies, and that 'sodium salts cannot be easily removed from drinking water' and 'any steps to reduce sodium concentrations are encouraged'.
Aluminium	<0.1 mg/L
Arsenic	<0.01 mg/L
Iron (total)	<0.3 mg/L
Iron (dissolved)	<0.03 mg/L
Lead	<0.01 mg/L
Manganese (total)	<0.1 mg/L
Manganese (dissolved)	<0.01 mg/L
Pesticides	Raw supplies: Refer to ADWG. Treated drinking water: Refer to ADWG.
PFAS	Per- and poly-fluoroalkyl substances (PFAS) are manufactured chemicals that do not occur naturally in the environment. PFAS chemicals include perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS) amongst a large group of other compounds. PFAS are persistent in the environment, show the potential for bioaccumulation and biomagnification, and are toxic in animal studies (potential developmental, reproductive and systemic toxicity). (ADWG)
PFOS+PFHxS	Raw supplies: <35 ng/L (half ADWG health guideline at time of publication)
PFOA	Raw supplies: <280 ng/L (half ADWG health guideline at time of publication).
Microplastics <300 μm	0 microplastics per litre
Other indicators (including physico-chemical indicators)	Refer to ADWG.

Source: Australian Drinking Water Guidelines (NHMRC, 2011, as amended). Technical review and advice from SEQwater, Queensland Health and Department of Regional Development, Manufacturing and Water (2020-2023).

5 Ways to improve water quality

The following sources are relevant in considering ways to improve water quality. The list below is additional to the plans, guidelines and other sources referred to in previous sections, **and is provided for information only**. For surface waters of South East Queensland (including surface fresh, estuarine and coastal waters), refer to separate documents under schedule 1 of the EPP (Water and Wetland Biodiversity), available from the Department's website.

Groundwater policy references

- Guidelines for groundwater quality protection in Australia
- Great Artesian Basin Strategic Management Plan

Local and regional plans, studies

- Council planning schemes and supporting codes, policies, available from council websites
- Resilient Rivers Initiative: SEQ Catchment Action Plans
- South East Queensland Regional Plan 2017 (ShapingSEQ)
- South East Queensland Natural Resource Management Plan 2009-2031 and 2021 update report
- Development guidelines: Water quality management in drinking water catchments (Segwater)

State plans, policies, guidelines, agreements

- Water Act 2000 and relevant water plans including Water Plan (Great Artesian Basin and Other Regional Aquifers)
- State Planning Policy (state interest water quality)
- Queensland Coastal Management Plan

Water quality guidelines

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) including Application of the Water Quality Guidelines to groundwater
- Queensland Water Quality Guidelines (QWQG)
- Queensland Monitoring and Sampling Manual
- Department of Environment and Science (2021). Using monitoring data to assess groundwater quality and potential environmental impacts. Version 2. Queensland Government, (DES) Brisbane

Other supporting technical information

- Information on PFAS in Queensland, including access to PFAS national environmental management plan
- Salinity Management Handbook available on the Queensland Government Publications website
 - o Chapter 10 Waters
 - Chapter 11 Water Quality
- Soil conservation guidelines for Queensland available on the Queensland Government Publications website
 - o Chapter 10 Land management on flood plains; Chapter 11 Stream stability; Chapter 13 Gully Erosion
- Department of Environment and Science, Queensland (2021) Treatment systems, Wetland Info website, accessed 21 September 2023
- Department of Environment and Science, Queensland (2021) Aquatic Ecosystem Rehabilitation Process, Wetland *Info* website, accessed 21 September 2023.
- Queensland Government, Queensland (2016) Groundwater dependent ecosystem mapping background, Wetland Info website, accessed 26 September 2023./
- Healthy Waterways Incorporated Water by Design: resources and information available on the Water by Design website.

6 Dictionary

AMTD means the adopted middle thread distance which is the distance in kilometres, measured along the middle of a watercourse, that a specific point in the watercourse is from the watercourse's mouth or junction with the main watercourse (definition based on Water Regulation 2002).

ANZECC means the Australian and New Zealand Environment and Conservation Council.

ANZECC Guidelines mean the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (recently updated to become ANZG, 2018), prepared by the Australian and New Zealand Environment and Conservation Council (ANZECC) and the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ).

Aquatic ecosystem (defined in the ANZG) any watery environment from small to large, from pond to ocean, in which plants and animals interact with the chemical and physical features of the environment.

Aquatic ecosystem (defined in the EPP (Water and Wetland Biodiversity)) means a community of organisms living within or adjacent to water, including riparian or foreshore areas.

Basin means the basin name and number provided by Geoscience Australia, Canberra (3rd edition, 2004).

Biological Integrity (defined in the EPP (Water and Wetland Biodiversity)) for water or a wetland, means the ability of the water or wetland to support and maintain a balanced, integrative, adaptive community of organisms having a species composition, diversity and functional organisation comparable to that of the natural habitat of the locality in which the water or wetland is situated.

Catchment means the total area draining into a river, creek, reservoir or other body of water. The limits of a given catchment are the heights of land (such as hills or mountains) separating it from neighbouring catchments. Catchments can be made up of smaller sub-catchments.

Ecological integrity (health) (defined in the ANZG) means the 'health' or 'condition' of an ecosystem. The ability of an ecosystem to support and maintain key ecological processes and organisms so that their species compositions, diversity and functional organisations are as comparable as possible to those occurring in natural habitats within a region.

Environmental value (EV) means:

- (a) a quality or physical characteristic of the environment that is conducive to ecological health or public amenity or safety; or
- (b) another quality of the environment identified and declared to be an environmental value under an Environmental Protection Policy or Regulation (e.g. water suitable for swimming in or drinking).

The EVs for water that can be identified for protection are outlined in the accompanying table.

Highest astronomical tide (HAT) (defined in Marine Parks (Declaration) Regulation 2006) means the highest level of the tides that can be predicted to occur under average meteorological conditions and under any combination of astronomical conditions.

High water mark (defined in *Coastal Protection and Management Act 1995*) means the ordinary high water mark at spring tides.

Mean high water spring refer high water mark.

Queensland waters (as defined in *Acts Interpretation Act 1954*): means all waters that are a) within the limits of the state; or b) coastal waters of the state.

Sub-basin means part of a basin.

Sub-catchment means part of a catchment.

Toxicant (defined in the ANZG): means a substance capable of producing an adverse response (effect) in a biological system, which may seriously injure structure or function or produce death at sufficiently high concentration.

Table 9 Environmental values that can be identified for protection

Environmental values and definitions	ICON (as shown on plans)
Aquatic ecosystem 'A community of organisms living within or adjacent to water, including riparian or foreshore area.' (EPP (Water and Wetland Biodiversity), schedule 2 - Dictionary)	
The intrinsic value of aquatic ecosystems, habitat and wildlife in waterways and riparian areas, for example, biodiversity, ecological interactions, plants, animals, key species (such as turtles, platypus, seagrass and dugongs) and their habitat, food and drinking water.	
Waterways include perennial and intermittent surface waters, groundwaters, tidal and non-tidal waters, lakes, storages, reservoirs, dams, wetlands, swamps, marshes, lagoons, canals, natural and artificial channels and the bed and banks of waterways.	
(This EV incorporates the 'wildlife habitat' EV used in the South East Queensland Regional Water Quality Management Strategy). See below for more details on aquatic ecosystems, based on the EPP (Water and Wetland Biodiversity).	
High ecological/conservation value waters	None
'Waters in which the biological integrity of the water is effectively unmodified or highly valued.' (EPP (Water and Wetland Biodiversity), schedule 2).	
Slightly disturbed waters	
'Waters that have the biological integrity of high ecological value waters with slightly modified physical or chemical indicators but effectively unmodified biological indicators.' (EPP (Water and Wetland Biodiversity), schedule 2).	None
Moderately disturbed waters	
'Waters in which the biological integrity of the water is adversely affected by human activity to a relatively small but measurable degree.' (EPP (Water and Wetland Biodiversity), schedule 2).	None
Highly disturbed waters 'Waters that are significantly degraded by human activity and have lower ecological value than high ecological value waters or slightly or moderately disturbed waters.' (EPP (Water and Wetland Biodiversity), schedule 2).	None

Suitability of water supply for irrigation, for example, irrigation of crops, pastures, parks, gardens and recreational areas.

Suitability of the water for supply as drinking water having regard to the level of treatment of the water.

ICON (as

shown on plans)

Environmental values and definitions

Irrigation

Visual recreation

Drinking water supply

section 6).

Means a use that does not ordinarily involve any contact with the water—for example angling from the shore, sunbathing near water (EPP (Water and Wetland Biodiversity),

Environmental values and definitions	ICON (as shown on plans)
Industrial use	
Suitability of water supply for industrial purposes, for example, food, beverage, paper, petroleum and power industries, mining and minerals refining/processing. Industries usually treat water supplies to meet their needs.	
Cultural and spiritual values	
Means scientific, social or other significance to the present generation or past or future generations, including Aboriginal people or Torres Strait Islanders (EPP (Water and Wetland Biodiversity)), section 6), for example:	~
custodial, spiritual, cultural and traditional heritage, hunting, gathering and ritual responsibilities	
symbols, landmarks and icons (such as waterways, turtles and frogs)	
lifestyles (such as agriculture and fishing).	