

Caley Valley Wetlands

Ongoing Monitoring Progress Report, November 2019

Prepared by Water Quality and Investigations Science Delivery Division Department of Environment and Science PO Box 5078 Brisbane QLD 4001

© The State of Queensland (Department of Environment and Science) 2019

The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence

Under this licence you are free, without having to seek permission from DES, to use this publication in accordance with the licence terms.

You must keep intact the copyright notice and attribute the State of Queensland, Department of Environment and Science as the source of the publication.

For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en

Disclaimer

This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy.

If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725

Citation

Department of Environment and Science (DES), 2019. Caley Valley Wetlands – Ongoing Monitoring Progress Report, November 2019.

November 2019

Executive Summary

The Caley Valley is a nationally important wetland and is listed in the Directory of Important Wetlands in Australia. The site contains coastal grass sedge wetland, mangroves, saltmarsh, creeks and channels and a lake. The Caley Valley Wetlands complex is a large, relatively intact wetland system, covering an area of about 5154 hectares. Although the wetland has been modified, it supports a wide range of environmental values such as aquatic ecosystems, recreational use and cultural and spiritual values. Caley Valley Wetlands provide habitat for large numbers of waterbirds, including threatened and migratory birds, with up to 48,000 waterbirds observed on site during high use times (BAAM 2012).

This report outlines three rounds of monitoring of water and sediment quality undertaken in the Caley Valley wetland between October 2018 and March 2019. *In situ* water quality measured in January and March 2019 were slightly above Queensland Water Quality Guidelines (EHP 2009) for some parameters in the control area and sites in the potentially impacted area. These values are within historical ranges and reflective of site specific conditions in the wetland. Although the results were compared to the Queensland Water Quality Guidelines for upper estuaries, the Caley Valley wetland is a modified estuarine system, and only partially tidally influenced.

In terms of toxicants, metals in surface water samples collected in the Caley Valley wetlands were generally measured below guidelines (ANZG 2018). Exceedances of dissolved copper and silver occurred in the control area and further afield in the wetland, however did not occur in the potentially impacted sites. No polycyclic aromatic hydrocarbons (PAH) or BTEX (benzene, toluene, ethylbenzene and xylene) were detected in surface water samples in either January or March 2019.

Overall, this preliminary study found little evidence of contaminants in the surface sediments and waters of the Caley Valley wetland. Elevated values for some water and sediment quality parameters were found, but are not consistent over time and occur in both control and potentially impacted areas.

The results presented in the report do not indicate any issues for management.

Contents

Ex	ecuti	ve Summary	. i
1	Intro	duction	. 1
2	Meth	nods	. 1
	2.1	Sampling Sites	1
	2.2	Timing	2
	2.3	Water Sampling	2
	2.4	Sediment Sampling	3
	2.5	Quality Control	3
	2.6	Guidelines	3
3	Resu	Ilts and Discussion	. 5
	3.1	Coal Fines in Sediment	5
	3.2	Water Quality Results	6
	In sit	tu measurements	6
	Labo	pratory results of surface water samples	8
	3.3	Sediment Quality Results	12
4	Con	clusions	15
Re	feren	ces	6
Ap	pend	ix A: Quality Assurance and Quality Control	17
Ap	pend	ix B: Laboratory Certificates of Analysis	9
Ap	pend	ix C: Coal Fine Analysis	56

List of tables

Table 1: Sample sites in the Caley Valley Wetland, and types of samples collected (S: Sedimentsamples, CF: Sediment for coal fine analysis, W: Water samples) in October 2018, January andMarch 2019.2
Table 2: Percentage of coal fines in sediment in the Caley Valley wetland in October 2018 andMarch 2019.5
Table 3: In situ results from surface water sampling in January 2019 compared to QueenslandWater Quality Guidelines (EHP 2009). Shaded cells indicate reported values that exceededguideline values.7
Table 4: In situ results from surface water sampling in March 2019 compared to Queensland Water Quality Guidelines (EHP 2009). Shaded cells indicate reported values that exceeded guideline values. 7
Table 5: Laboratory results from surface water sampling in January 2019 compared to QueenslandWater Quality Guidelines (EHP 2009) and Australian and New Zealand Guidelines for Fresh andMarine Water Quality, default toxicant guideline values (ANZG 2018).9
Table 6: Laboratory results from surface water sampling in March 2019 compared to QueenslandWater Quality Guidelines (EHP 2009) and Australian and New Zealand Guidelines for Fresh andMarine Water Quality, default toxicant guideline values (ANZG 2018).11
Table 7: Hardness modified Trigger values for cadmium, chromium, lead, nickel and zinc using the method outlined in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality, (ANZECC & ARMCANZ 2000). Hardness modification has only been applied to samples with freshwater characteristics. 12
Table 8: Total metals in soil samples collected in October 2018 compared to the sediment quality guidelines (ANZG 2018). Highlighted cells indicate the result is above a guideline value. Light orange shading indicates the result is above the default guideline value (DGV), dark orange shading indicates the result is above the GV–High
Table 9: Total metals in soil samples collected in March 2019 compared to the sediment quality guidelines (ANZG 2018). Highlighted cells indicate the result is above a guideline value. Highlighted cells indicate the result is above a guideline value. Light orange shading indicates the result is above the default guideline value (DGV)

List of figures

1 Introduction

The Caley Valley is a nationally important wetland and is listed in the Directory of Important Wetlands in Australia. The site contains coastal grass sedge wetland, mangroves, saltmarsh, creeks and channels and a lacustrine wetland (a lake). The Caley Valley Wetlands complex is a large, relatively intact wetland system, covering an area of about 5154 hectares. Although the wetland has been modified, it supports a wide range of wetland values such as aquatic ecosystem, recreational use and cultural and spiritual use. Caley Valley Wetlands are a Matter of State Environmental Significance, providing habitat for large numbers of waterbirds, including threatened and migratory birds, with up to 48,000 waterbirds observed on site during high use times (BAAM 2012). The coastal grass-sedge wetlands are particularly important habitat for the endangered Australian painted snipe (*Rostratula australis*) with sightings at several locations in the wetland (BAAM 2012). The wetland is located in the dry tropics and are subject to seasonal variations in the extent of fresh water inundation. The consequential wetting and drying cycle of these wetlands is critical to the environmental values they support.

The Caley Valley wetland is adjacent to, and downstream of, the Abbot Point Bulk Coal Terminal (Abbot Point Terminal) and was subject to an authorised temporary release of stormwater runoff from the coal terminal during Tropical Cyclone Debbie. Satellite imagery collected after Tropical Cyclone Debbie appeared to show dark waters downstream of the release point that extended into the wetland. In April 2017 government staff undertook a rapid assessment of the wetland and found that although there were indications of recent flooding, there was little visual evidence of coal fines across the whole of the wetland, apart from a site immediately downstream of the licensed discharge point. The Queensland Department of Environment and Science (DES) recommended further monitoring be undertaken by Abbot Point Bulkcoal Pty Ltd, as part of an Environmental Evaluation. In September 2018 DES decided to conduct its own long-term monitoring program in the Caley Valley Wetland (see https://environment.des.qld.gov.au/management/monitoring/locations-of-interest/caley-valley-wetland for more information).

This report outlines three rounds of monitoring of water and sediment quality undertaken in the Caley Valley wetland between October 2018 and March 2019. Information gathered from this monitoring will be used to design a longer term monitoring program to provide a baseline to assess impacts (if any) from uncontrolled releases from the Abbot Point Terminal in the future.

2 Methods

2.1 Sampling Sites

Two areas for monitoring were established in two separate arms of the wetland (Figure 1). The eastern arm represented an area likely to be directly impacted by a release from the Abbot Point Terminal. The western arm represented a control area that was less likely to be directly impacted by a release from the Abbot Point Terminal. In each area two transects were established, each originating at a location on the eastern bank and radiating westward and south-westward, respectively, with increasing distance from the origin. In the eastern, potentially impacted area, this origin coincided with the licensed release point for the Abbot Point Terminal. There were a total of seven sites in each area.

2.2 Timing

In October 2018 the wetland was completely dry and so only sediment samples were taken. In January 2019, the wetland was partially inundated and water samples were collected. In March 2019 the wetland was completely inundated, and both water and sediment samples were collected. It was not considered safe to sample at all sites in March 2019 due to the deep water and potential for crocodiles to be present. Sampling is summarised in Table 1.

Table 1: Sample sites in the Caley Valley Wetland, and types of samples collected (S: Sediment
samples, CF: Sediment for coal fine analysis, W: Water samples) in October 2018, January and March
2019.

Location				
Site	October 2018	January 2019	March 2019	Comments
Potential Impac	t Area			
W1				Release Point
CV-T1-S1	S		S,W	Common start of both transects
CV-T1-S2	S		S	Transect 1, Site 2
CV-T1-S3	S		S	Transect 1, Site 3
CV-T1-S4	S	W	W	Transect 1, Site 4
CV-T2-S2	S		S	Transect 1, Site 2
CV-T2-S3	S		S	Transect 1, Site 3
CV-T2-S4	S			Transect 1, Site 4
Control Area				
CV-CT1-S1	S		W	Common start of both transects
CV-CT1-S2	S		W	Transect 1, Site 2
CV-CT1-S3	S		W	Transect 1, Site 3
CV-CT1-S4	S	W		Transect 1, Site 4
CV-CT2-S2	S			Transect 1, Site 2
CV-CT2-S3	S			Transect 1, Site 3
CV-CT2-S4	S			Transect 1, Site 4
Other areas				
CV-FW			W	Site in wetland
CV-SWC		W	W	Site in Saltwater Creek
CV-BO		W	W	Wetland site at outflow pipe on southern end of the eastern bund
CV-EB			W	Wetland site at northern end of the eastern bund

2.3 Water Sampling

At each sampling site where water was present, (Table 1) *in situ* water quality data were collected using a YSI 556 MPS multi-parameter meter. Water samples were taken for the analysis of metals and metalloids, polycyclic aromatic hydrocarbons (PAH) and BTEX (benzene, toluene, ethylbenzene and xylene). Powder free disposable gloves were used when collecting samples, with a fresh pair being used at each site to prevent contamination of samples. Samples were kept chilled on ice after collection and sent to Australian Laboratory Services (ALS), a National Association of Testing Authorities (NATA) Australia accredited laboratory, for analysis.

2.4 Sediment Sampling

At each sampling site (Table 1), composite sediment samples were collected. This involved randomly collecting five replicate samples of approximately 10 x 10 cm in area and 1 cm depth at each site and compositing them together before taking a subsample for analysis. This is a standard field sample practice as sediments can be highly heterogeneous (DES 2018). The use of composite samples are a way of adjusting for variation found in sediment samples. Samples were collected using a stainless steel trowel and were mixed in a stainless steel bowl. All equipment was thoroughly cleaned between sites. Disposable gloves were used when collecting samples, with a fresh pair used at each site. From a subset of composite samples, duplicate samples were obtained by splitting the contents of the bowl into two jars. Samples for the analysis of toxicants were kept chilled on ice after collection and sent to ALS for analysis. Additional sediment samples were collected and sent to ALS for coal fines analysis. To test for coal, a density separation method (float/sink testing) was performed on samples before further drying, crushing and microscopic analysis of the two separate density fractions. Samples were then prepared as per normal petrographic methods by mounting the crushed samples in an acrylic resin, and polishing to produce a suitable surface for reflected light microscopy. A point count of each sample was conducted with the material under the crosshairs of the microscope being classified as coal, mineral matter or organic matter. Five hundred points or a single pass of the entire area were counted on the sample at 500x magnification. Results were expressed as the percentage of coal fines and organic matter on a volume basis (for more information, see Appendix C and DSITI 2017).

2.5 Quality Control

Quality control (QC) samples were taken as per the Queensland Monitoring and Sampling Manual (DES 2018). Two field blanks were included in the March 2019 sampling round. A small concentration of dissolved boron (8 μ g/L) and total nickel (0.6 μ g/L) were found in one of the blank samples. However, as none of the samples exceeded guidelines for dissolved boron (370 μ g/L) or nickel (dissolved nickel guideline value is 8 μ g/L), this low level of contamination were not considered to be of concern. No dissolved boron or total nickel were found in the other blank sample. Therefore, the results of the laboratory analysis were deemed accurate. The results of the blank samples are shown in Appendix A.

2.6 Guidelines

The results of in situ and laboratory measurements were compared to the following guidelines:

- Total suspended solids and *in situ* results from surface water sampling were compared to Queensland Water Quality Guidelines (QWQG) for upper estuarine waters in the Central Coast Regions, Table 2 (EHP 2009).
- Laboratory results for analytes in surface water samples were compared to guideline values for upper estuarine waters in the Central Coast Regions, Table 2 (EHP 2009) and Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018). Trigger values for cadmium, chromium, lead, nickel and zinc were modified (Table 7) according to the water hardness at each site using the method outlined in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC & ARMCANZ 2000).
- Results of total metals in sediment samples were compared to the ANZG (2018) sediment quality guidelines.

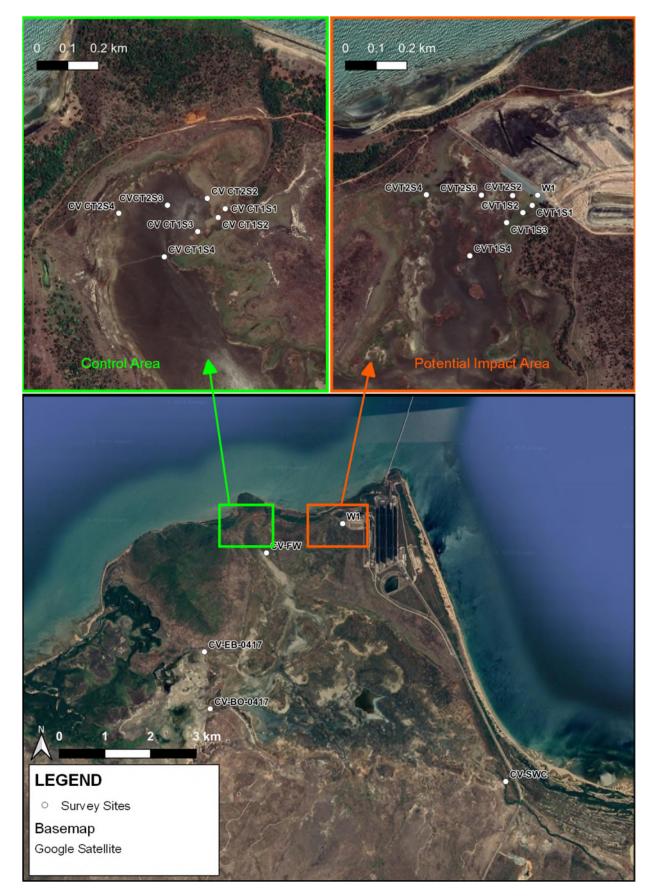


Figure 1: Sample locations at Caley Valley Wetlands at Abbot Point.

3 Results and Discussion

3.1 Coal Fines in Sediment

Estimates of coal in the sediment in October 2018 and March 2019 showed that the highest percentage of coal (0.6 and 1.8 % respectively) were found at site CV-T1-S2 in the potentially impacted area (Table 2). Overall, the concentration of coal fines found in the sediment were low, and no coal was measured at the majority of sites.

Table 2: Percentage of coal fines in sediment in the Caley Valley wetland in October 2018 and March
2019.

Site	Percentage of coal	fines in sediment (%mass)
	October 2018	March 2019
Potential Impact Area		
CV-T1-S1	0.3	0.2
CV-T1-S2	0.6	1.8
CV-T1-S3	0.0	0.0
CV-T1-S4	0.0	_
CV-T2-S2	0.0	0.0
CV-T2-S3	0.0	0.0
CV-T2-S4	0.4	_
Control Area		
CV-CT1-S1	0.0	_
CV-CT1-S2	0.2	_
CV-CT1-S3	0.0	_
CV-CT1-S4	0.0	_
CV-CT2-S2	0.0	_
CV-CT2-S3	0.0	_
CV-CT2-S4	0.0	_

¹ Relative densities of 1400 kg·m⁻³ for coal and 2600 kg·m⁻³ for minerals (O'Brien 2017 and references therein) were used to calculate the mass abundance of coal and mineral in each sample (using mass = volume X density; where volume is equivalent to projected area basis percentage). Sites not sampled are denoted by '-'.

3.2 Water Quality Results

In situ measurements

In January 2019 (Table 3):

- pH exceeded the QWQG (2009) at two of the four sites;
- dissolved oxygen concentration was above the guidelines at two sites, and below the guidelines at one site (CV–SWC); and
- electrical conductivity in all wetland sites was high (21.48 60.96 mS/cm), and comparatively low at the site in Saltwater Creek (1.90 mS/cm).

In March 2019 (Table 4):

- pH was below the guidelines at site W1, CV-T1-S1 and CV-T1-S2;
- pH was above the guidelines at two out of three sites in the control area and at all other sites in the wetland;
- dissolved oxygen concentration was either above or below the guidelines at all sites; and
- electrical conductivity was relatively low at all sites (1.3 2.7 mS/cm in the potentially impacted area, around 4.3 mS/cm in the control area, and 1.1 -2.8 mS/cm in other wetland areas).

Elevated pH levels have been reported in the wetlands previously, with pH exceeding the upper guideline value of pH 8.4 throughout the wetlands depending on the time of the year and site (BMT WBM 2015; DSITI 2017; GHD 2012), and a pH of greater than 9 measured historically throughout the wetland and Lake Caley (BMT WBM 2015).

Historically, dissolved oxygen concentrations have been highly variable in the wetland (BMT WBM 2015; DSITI 2017; GHD 2012), with concentrations of up to 325% saturation being measured in the wetland to the east of the eastern bund (BMT WBM 2015). Large mats of benthic algae and algae covering vegetation were noted at many sites, which likely contribute to the high concentrations of oxygen in the waters.

High electrical conductivities indicate a high concentration of ions in the water. The wetland has a variety of salinity levels, ranging from fresh to estuarine and hypersaline (BMT WBM 2015), depending on time of year and accumulated rainfall. In January 2019 the wetland sites had electrical conductivities that were brackish in the potential impact and control area (21.48 to 29.5 mS/cm). The site in the southern wetland (CV-BO) had a high electrical conductivity of 60.96 mS/cm. The salinities at the wetland sites were considered typical for the time of year and low rainfall conditions. In January 2019 the site at Saltwater Creek had a low conductivity. Saltwater Creek has been described as being of freshwater to brackish character (BMT WBM 2012, 2015; GHD 2012), and the measured salinities in January 2019 (1.9 mS/cm) lie well within the historical range for this creek (BMT WBM 2015). In March 2019, all sites in the wetland (1.3 to 4.3 mS/cm) and Saltwater Creek (1.1 mS/cm) had electrical conductivites tending towards freshwater, indicating wet season conditions and a large input of freshwater to the system.

Table 3: *In situ* results from surface water sampling in January 2019 compared to Queensland Water Quality Guidelines (EHP 2009). Shaded cells indicate reported values that exceeded guideline values.

Site	Date and time	Temperature (°C)	pH range	Dissolved oxygen (% saturation)	Electrical conductivity (mS/cm)	
QWQG						
Upper Estuarine			7.0-8.4	70-100	N/A	
Central Coast Region						
Potential Impact Area						
CV-T1-S4-0119	23/01/2019 13:10	35.82	7.55	106.2	21.48	
Control Area						
CV-CT1-S4-0119	23/01/2019 16:15	33.27	9.18	110.0	29.50	
Other wetland areas						
CV-BO-0119	23/01/2019 17:00	31.44	8.86	97.3	60.96	
CV-SWC-0119	23/01/2019 9:15	25.82	7.49	49.0	1.90	

Table 4: *In situ* results from surface water sampling in March 2019 compared to Queensland Water Quality Guidelines (EHP 2009). Shaded cells indicate reported values that exceeded guideline values.

Site	Date and time	Temperature (°C) pH range		Dissolved oxygen (% saturation)	Electrical conductivity (mS/cm)
QWQG					
Upper Estuarine			7.0-8.4	70-100	N/A
Central Coast Region					
Potential Impact Area					
W1	6/03/2019 11:00	28.13	6.95	5.9	1.529
CV-T1-S1-0319	5/03/2019 12:05	32.5	6.72	35.7	1.304
CV-T1-S2-0319	5/03/2019 13:45	31.40	6.74	40.2	1.688
CV-T1-S3-0319	5/03/2019 15:00	29.45	7.94	107.6	2.629
CV-T1-S4-0319	6/03/2019 9:35	27.19	7.51	48.2	2.627
CV-T2-S2-0319	2-S2-0319 6/03/2019 10:20		7.77	62.9	2.665
Control Area					
CV-CT-C1-0319	6/03/2019	30.31	9.26	135.0	4.320
CV-CT-C2-0319	6/03/2019	30.21	9.26	141.0	4.345
CV-CT-C3-0319	6/03/2019	30.30	10.07	194.0	4.300
Other wetland areas					
CV-FW-0319	6/03/2019 13:50	30.50	8.57	141.4	2.800
CV-SWC-0319	5/03/2019 8:45	26.81	8.53	66.8	1.052
CV-BO-0319	6/03/2019 16:10	29.21	9.63	131.9	2.427
CV-EB-0319	6/03/2019 15:43	29.55	10.14	164.4	2.701

Laboratory results of surface water samples

In January 2019, surface water samples collected in the Caley Valley wetlands were generally compliant with ANZG (2018) and Queensland Water Quality guidelines (EHP 2009) (Table 5). Exceedances occurred either at both control and impact locations, or only at control locations. Specifically,

- total suspended solids were highest (288 mg/L) at the potentially impacted investigation area, but also exceeded the guideline values of 25 mg/L in the control area and at Saltwater Creek; and
- dissolved (0.45 μm filtered) copper exceeded the guideline value (1.3 μg/L) at the wetland site CV–BO (2 μg/L), but was within the guidelines or not detected at other sites.

Similarly, in March 2019, surface water samples collected in the Caley Valley wetlands were again generally compliant with ANZG (2018) Queensland Water Quality guidelines (EHP 2009) (Table 6). Exceedances only occurred at control locations or other sites in the wetland (Table 6). Specifically,

- total suspended solids were highest (90 and 91 mg/L) and exceeded the guidelines at two sites in the greater wetland area, but were within the guidelines at all other control and impact sites;
- dissolved (0.45 µm filtered) copper was at or exceeded the guideline value of 1.4 µg/L at one control site (CV–CT3) and two sites in the wetland (CV–FW and CV–EB), but was within the guidelines at all other sites, with the exceedances being 0.6 µg/L or less; and
- dissolved (0.45 μm filtered) silver was only detected at, and exceeded the guideline value (0.05 μg/L) at sites CV–FW and one control site CV–CT3 (both 0.2 μg/L), but was not detected at any other site.

No polycyclic aromatic hydrocarbons (PAH) or BTEX (benzene, toluene, ethylbenzene and xylene) were detected in surface water samples.

Table 5: Laboratory results from surface water sampling in January 2019 compared to Queensland Water Quality Guidelines (EHP 2009) and Australian and New Zealand Guidelines for Fresh and Marine Water Quality, <u>default toxicant guideline values</u> (ANZG 2018).

		Potentially Impacted Area	Control Area	Other Wetland Sites		
Analyte	Guideline	CV-T1S4-0119*	CV–CT1S4– 0119*	CV–SWC– 0119**	CV-BO-0119*	
Physico-Chemical						
Total Dissolved Solids (mg/L)		14600	19800	806	41800	
Suspended Solids (mg/L)	25ª	288	38	40	-	
Hardness (mg/L)		3490	3360	185	7600	
Major Ions	1					
Calcium (mg/L)		328	336	28	538	
Chloride (mg/L)		7710	10300	298	23400	
Fluoride (mg/L)		0.5	0.5	0.2	0.9	
Magnesium (mg/L)		649	612	28	1520	
Potassium (mg/L)		197	182	10	497	
Sodium (mg/L)		5940	5580	167	12900	
Sulfate as SO4 (mg/L)		1150	461	26	3350	
Total Anions (meq/L)		242	301	12.3	732	
Total Cations (meq/L)		333	314	11.2	726	
Dissolved Metals and Metalloids	(all µg/L)				1	
Antimony		-	_	_	-	
Arsenic	24 ^c	3.1	2.8	2.2	1.5	
Beryllium		_	_	<0.1	_	
Boron	370 ^c	1280	1860	137	5180	
Cadmium	0.7⁵, HMTV	-	_	_	_	
Chromium III^	27.4 ^ь , HMTV	-	-	_	-	
Chromium VI^	4.4 ^b	-	-	_	-	
Cobalt	1 ^b	0.6	_	1.0	_	
Copper	1.3 ^b ; 1.4 ^c	—	-	0.6	2	
Lead	4.4 [♭] , HMTV	-	-	_	-	
Manganese	1900 ^c	_	_	286	_	
Mercury	0.4 ^b ; 0.6 ^c	-	_	_	-	
Molybdenum		27.7	38.6	1.6	9.9	
Nickel	7 ^b , HMTV	3.5	1.4	1.6	0.5	
Selenium	11 ^c	_	2	_	7	
Silver	1.4 ^b ; 0.05 ^c	-	_	_	-	
Tin		_	_	_	-	
Zinc	15 [⊳] , HMTV	–	-	-	-	

a Queensland Water Quality Guidelines (EHP 2009) for Upper Estuarine Central Coast Region

 Australian and New Zealand Guidelines for Fresh and Marine Water Quality, <u>default toxicant guideline values</u> (ANZG 2018). Trigger values for metals and metalloids in marine water.

c Australian and New Zealand Guidelines for Fresh and Marine Water Quality, <u>default toxicant guideline values</u> (ANZG 2018). Trigger values for metals and metalloids in freshwater.

HMTV Hardness Modified Trigger Value –see table 7

Result below Limit of Reporting (LOR)

- *
- The sampled water at this site had marine water characteristics and was analysed by the laboratory using a marine water matrix. Trigger values for marine water were used. The sampled water at this site had freshwater characteristics and was analysed by the laboratory using a freshwater matrix. Trigger values for freshwater were used. **
- ۸ Laboratory results are for unspeciated chromium. Only trigger values for freshwater were used in calculation of HMTVs.

Table 6: Laboratory results from surface water sampling in March 2019 compared to Queensland Water Quality Guidelines (EHP 2009) and Australian and New Zealand Guidelines for Fresh and Marine Water Quality, default toxicant guideline values (ANZG 2018).

			ntially ed Area	Control Area			Other Wetland Sites			
Analyte	Guideline	CV– T1S1– 0319*	CV– T1S4– 0319*	CV– CT1S1– 0319*	CV– CT1S2– 0319*	CV– CT1S3– 0319*	CV– FW– 0319*	CV– SWC– 0319*	CV– BO– 0319*	CV– EB– 0319*
Physico-Chemica										
Total Dissolved Solids (mg/L)		1000	1600	2690	2690	2650	1720	630	1480	1610
Suspended Solids (mg/L)	25ª	24	10	5	6	-	90	10	17	91
Hardness (mg/L)		227	280	383	375	375	292	175	209	237
Major Ions							-			
Calcium (mg/L)		35	33	38	38	38	33	29	21	24
Chloride (mg/L)		323	704	1270	1260	1250	766	258	711	766
Fluoride (mg/L)		0.3	0.3	0.2	0.2	0.2	0.3	0.1	0.2	0.2
Magnesium(mg/L)		34	48	70	68	68	51	25	38	43
Potassium (mg/L)		10	16	24	24	24	17	5	15	17
Sodium (mg/L)		212	395	692	685	686	431	132	376	408
Sulfate as SO ₄		164	131	109	110	107	132	26	66	73
Total Anions		14.5	24.6	39.4	39.1	38.6	26.3	9.88	22.6	24.5
Total Cations		14.0	23.2	38.4	37.9	37.9	25.0	9.37	20.9	22.9
Dissolved Metals	and Metallo	oids (all µg	g/L)							
Antimony		-	-	-	-	-	-	-	-	-
Arsenic	24 ^b	1.4	1.6	2.4	2.4	2.0	1.8	0.7	2.4	2.3
Beryllium		-	-	-	-	-	-	-	-	-
Boron	370 ^b	116	187	237	251	220	179	58	176	192
Cadmium	HMTV	—	—	-	—	-	_	-	-	-
Chromium [^]	HMTV	—	—	-	—	_	_	-	-	-
Cobalt		1.9	0.6	0.4	0.4	0.3	0.5	0.6	0.4	0.3
Copper	1.4 ^b	-	—	-	0.5	2.1	-	0.5	1.4	1.5
Lead	HMTV	—	—	-	—	_	_	-	-	-
Manganese	1900 ^b	520	119	48.2	38.7	4.6	49.3	54.5	2.7	4.2
Mercury	0.6 ^b	-	—	-	-	-	-	-	-	-
Molybdenum		5.2	5.6	4.1	4.1	4.3	5.2	0.8	3.1	3.6
Nickel	HMTV	4.7	2.6	0.6	0.6	0.6	2.1	1.1	1.0	1.0
Selenium	11 ^b	0.3	0.4	0.6	0.5	0.6	0.4	0.2	0.4	0.4
Silver	0.05 ^b	-	-	-	-	0.2	0.2	-	-	-
Tin		-	—	-	-	-	_	-	-	-
Zinc		-	-	-	-	-	_	-	-	-

а

Queensland Water Quality Guidelines (EHP 2009) for Upper Estuarine Central Coast Region Australian and New Zealand Guidelines for Fresh and Marine Water Quality, <u>default toxicant guideline values</u> (ANZG 2018). Trigger values for metals and metalloids in freshwater. b

HMTV Hardness Modified Trigger Value - see Table 7

Result below Limit of Reporting (LOR) *

The water had freshwater characteristics and was analysed by the laboratory using a freshwater matrix. Trigger values for freshwater were used. ۸ Laboratory results are for unspeciated Chromium.

Table 7: Hardness modified Trigger values for cadmium, chromium, lead, nickel and zinc using the method outlined in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality, (ANZECC & ARMCANZ 2000). Hardness modification has only been applied to samples with freshwater characteristics.

Analuta	DGVª		ntially ed Area		Contro	ol Area		Ot	ther Wet	land Sit	es
Analyte		CV– T1S1	CV– T1S4	CV– CT1S1	CV– CT1S2	CV– CT1S3	CV– CT1S4	CV– FW	CV– SWC	CV– BO	CV– EB
January 20	January 2019										
Hardness (mg/L)	3490	NA	NA	NA	NA	3360	NA	185	7600	NA
Cadmium	0.2	-	_	_	_	-	-	_	1.01	-	_
Chromium III	3.3	_	_	_	_	_	_	-	14.67	_	_
Lead	3.4	-	-	_	_	-	-	-	34.26	-	-
Nickel	11	-	-	-	-	-	_	-	51.63	—	-
Zinc	8	-	-	_	-	-	_	-	37.55	—	-
March 201	9				<u>.</u>						
Hardness (mg/L)	227	280	383	375	375	NA	292	175	209	237
Cadmium	0.2	1.21	1.46	1.93	1.89	1.89	-	1.52	0.96	1.13	1.26
Chromium III	3.3	17.35	20.6	26.64	26.18	26.18	-	21.23	14.01	16.21	17.97
Lead	3.4	44.43	58.00	86.34	84.05	84.05	_	61.17	31.93	40.01	46.93
Nickel	11	61.44	73.44	95.84	94.14	94.14	_	76.11	49.25	57.27	63.73
Zinc	8	44.68	53.41	69.70	68.46	68.46	-	55.35	35.82	41.65	46.35

a Australian and New Zealand Guidelines for Fresh and Marine Water Quality <u>default toxicant guideline values</u> (ANZG 2018). Trigger values for metals and metalloids in freshwater.

NA Site not sampled

Shaded cells in blue indicate the sampled water had marine water characteristics and was analysed by the laboratory using a marine water matrix.

Shaded cells in green indicate the sampled water had freshwater characteristics and was analysed by the laboratory using a freshwater matrix. Trigger values for freshwater were used in calculation of HMTVs.

3.3 Sediment Quality Results

The analysis of total metals in sediment samples collected in October 2018 (Table 8) and March 2019 (Table 9) showed that all but one analyte (nickel) were lower than <u>sediment quality guidelines</u> (ANZG 2018). In October 2018, nickel was:

- at the GV–High value (52 mg/kg) at potentially impacted site CV–T1–S1;
- above the DGV of 21 mg/kg at potential impact sites CV–T2–S3; and
- above the DGV of 21 mg/kg at control sites CV-CT1-S2, CV-CT1-S4, CV-CT2-S2 and CV-CT2-S3.

In March 2019 2018, nickel was above the DGV of 21 mg/kg at potential impact sites CV–T1–S1 and CV–T1–S2.

The results would indicate that elevated nickel is naturally occurring in the Caley Valley wetlands as it was found at both the control and potentially impacted sites.

Table 8: Total metals in soil samples collected in October 2018 compared to the <u>sediment quality guidelines</u> (ANZG 2018). Highlighted cells indicate the result is above a guideline value. Light orange shading indicates the result is above the default guideline value (DGV), dark orange shading indicates the result is above the result is above the GV–High.

Analyte	Gui	deline		Potentially Impacted Area								Co	ontrol Are	a		
	GV	SQG– High	CV–T1– S1	CV–T1– S2	CV–T1– S3	CV–T1– S4	CV–T2– S2	CV–T2– S3	CV– T2–S4	CV– CT1–S1	CV– CT1–S2	CV– CT1–S3	CV– CT1–S4	CV– CT2–S2	CV– CT2–S3	CV– CT2–S4
Arsenic	20	70	9	11	9	13	10	13	-	12	19	10	15	18	12	9
Barium			90	50	20	30	30	20	20	20	30	20	40	40	40	20
Beryllium			2	-	-	-	-	1	-	-	-	-	1	1	-	-
Boron			50	-	-	70	-	60	-	-	60	-	100	60	70	60
Cadmium	1.5	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	80	370	24	18	24	37	25	37	16	26	46	29	46	46	44	28
Cobalt			52	15	16	16	12	19	8	16	20	14	20	25	23	12
Copper	65	270	27	15	17	21	19	24	12	15	30	15	25	23	23	14
Lead	50	220	9	12	6	7	8	7	5	7	9	7	11	13	11	7
Manganese			332	131	158	324	216	188	98	601	391	462	1280	2160	725	641
Mercury	0.15	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	21	52	52	18	18	20	16	25	11	14	23	15	22	24	23	14
Selenium			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium			36	29	35	51	36	51	24	51	93	48	72	79	71	45
Zinc	200	410	158	47	62	53	67	71	28	25	40	24	35	40	35	23

Result is below Limit of Reporting (LOR)

Table 9: Total metals in soil samples collected in March 2019 compared to the <u>sediment quality guidelines</u> (ANZG 2018). Highlighted cells indicate the result is above a guideline value. Light orange shading indicates the result is above the default guideline value (DGV).

Analyte	Gu	ideline		Potentially Impacted Area							
	GV	SQG–High	CV–T1–S1	CV-T1-S2	CV-T1-S3	CV-T1-S4	CV-T2-S2				
Arsenic	20	70	6	5	7	7	12				
Barium			30	70	10	20	30				
Beryllium			_	_	-	-	-				
Boron			-	-	-	-	-				
Cadmium	1.5	10	_	_	-	-	-				
Chromium	80	370	20	18	16	21	26				
Cobalt			31	27	9	12	18				
Copper	65	270	17	25	13	18	17				
Lead	50	220	8	8	5	-	8				
Manganese			255	285	62	88	174				
Mercury	0.15	1	_	_	-	-	-				
Nickel	21	52	30	25	11	16	20				
Selenium			-	-	-	-	-				
Vanadium			33	34	30	36	46				
Zinc	200	410	118	80	47	65	64				

Result is below Limit of Reporting (LOR)

4 Conclusions

This preliminary study found little evidence of contaminants in the surface sediments and waters of the Caley Valley wetland. Sediment samples collected in October 2018 and March 2019 showed that most samples contained trace or no coal fines. The highest concentrations (although still very low) of coal fines were found in the vicinity of the bund wall. Nickel exceeded sediment guidelines in October 2018, in both control and potential impact areas, and in March 2019 in the potentially impacted area (note: only the potentially impacted area was sampled in March 2019). As nickel was measured in both the potentially impacted and control areas, it is likely that this element is naturally occurring at elevated levels in the Caley Valley Wetlands.

In situ water quality measured in January and March 2019 exceeded Queensland Water Quality Guidelines for some parameters at sites in the potentially impacted area, the control area and other sites in the wetland, as well as Saltwater Creek. These exceedances are within historical ranges, and are likely reflective of site specific conditions in the wetland.

Total suspended solids (TSS) exceeded the guidelines at a number of sites in January and March 2019, with the highest exceedance in the potentially impacted area. However, sites from all over the wetlands had elevated TSS results, not just in the potentially impacted zone.

In terms of toxicants, metals in surface water samples collected in the Caley Valley wetlands were generally measured below guidelines (ANZG 2018). Exceedances of dissolved copper and silver occurred in the control area and further afield in the wetland, but did not occur in the potentially impacted sites. PAHs or BTEX were not detected in the water in either January or March 2019.

Water and sediment quality results to date show that exceedances of several water quality parameters and one sediment quality parameter have occurred, however these exceedances are not consistent over time and occur in both control and potentially impacted areas. Although the results were compared to the *Queensland Water Quality Guidelines* for upper estuaries, the Caley Valley wetland is modified estuarine system, and only partially tidally influenced. Therefore, locally relevant guidelines should be derived for this system.

References

- ANZECC & ARMCANZ. 2000. "Australian and New Zealand Guidelines for Frsh and Marine Water Quality." Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
- ANZG. 2018. "Australian and New Zealand Guidelines for Fresh and Marine Water Quality." Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia.
- BAAM. 2012. "Coordinated Migratory Shorebird and Waterbird Surveys Abbot Point." *Report for Saunders Havill Group and E3 Consult on Behalf of NQBP*.
- BMT WBM. 2012. "Kaili (Caley) Valley Wetlands Baseline Report." *Report Prepared for Office of the Coordinator General, Department of Employment, Economic Development and Innovation.*
- BMT WBM. 2015. "Abbot Point Growth Gateway Project." *Technical Report for Wetland Hydrology, Water Quality and Aquatic Ecology Components (MSES). Report Prepared for Advision.*
- DSITI. 2017. "Caley Valley Wetlands Preliminary Assessment of Impacts to Caley Valley Wetlands from Abbot Point Coal Terminal Post Tropical Cyclone Debbie." (July).DES. 2018.
 "Monitoring and Sampling Manual: Environmental Protection (Water) Policy. Brisbane: Department of Environment and Science Government."
- EHP. 2009. "Department of Environment and Heritage Protection. Queensland Water Quality Guidelines." 3:184.
- GHD. 2012. "Abbot Point Cumulative Assessment: Water Quality and Hydrology." *Report Prepared for Abbot Point Working Group*.

Appendix A: Quality Assurance and Quality Control

Table A-1

		Sample Description	BLANK	Blank full suite
		Date	06/03/2019	06/03/2019
		Site	CV-BI-0319	CV-BB-0319
Analyte	Unit	LOR		
Physico-Chemical			1	
Suspended Solids (SS)	mg/L	5	_	<5
Total Hardness as CaCO3	mg/L	1	_	<1
Total Alkalinity as CaCO3	mg/L	1	-	4
Major Ions	•			
Calcium	mg/L	1	_	<1
Chloride	mg/L	1	-	<1
Fluoride	mg/L	0.1	-	<0.1
Magnesium	mg/L	1	-	<1
Potassium	mg/L	1	-	<1
Sodium	mg/L	1	-	<1
Sulfate as SO4 - Turbidimetric	mg/L	1	-	<1
Total Anions	meq/L	0.01	-	0.08
Total Cations	meq/L	0.01	-	<0.01
Ionic Balance	%	0.01	-	-
Dissolved Metals and Metallo	ids			
Antimony	µg/L	0.2	<0.2	<0.2
Arsenic	µg/L	0.2	<0.2	<0.2
Beryllium	µg/L	0.1	<0.1	<0.1
Boron	µg/L	5	8	<5
Cadmium	µg/L	0.05	<0.05	<0.05
Chromium	µg/L	0.2	<0.2	<0.2
Cobalt	µg/L	0.1	<0.1	<0.1
Copper	µg/L	0.5	<0.5	<0.5
Lead	µg/L	0.1	<0.1	<0.1
Manganese	µg/L	0.5	<0.5	<0.5
Mercury	mg/L	0.0001	<0.0001	<0.0001
Molybdenum	µg/L	0.1	<0.1	<0.1
Nickel	µg/L	0.5	<0.5	<0.5
Selenium	µg/L	0.2	<0.2	<0.2
Silver	µg/L	0.1	<0.1	<0.1
Tin	µg/L	0.2	<0.2	<0.2
Zinc	µg/L	1	<1	<1
Total Metals and Metalloids				
Antimony	µg/L	0.2	<0.2	<0.2
Selenium	µg/L	0.2	<0.2	<0.2
Arsenic	µg/L	0.2	<0.2	<0.2

		Sample Description		Blank full suite
		Date	06/03/2019	06/03/2019
		Site	CV-BI-0319	CV-BB-0319
Beryllium	µg/L	0.1	<0.1	<0.1
Boron	µg/L	5	<5	<5
Cadmium	µg/L	0.05	<0.05	<0.05
Chromium	µg/L	0.2	<0.2	<0.2
Cobalt	µg/L	0.1	<0.1	<0.1
Copper	µg/L	0.5	<0.5	<0.5
Lead	µg/L	0.1	<0.1	<0.1
Manganese	µg/L	0.5	<0.5	<0.5
Mercury	mg/L	0.0001	<0.0001	<0.0001
Molybdenum	µg/L	0.1	<0.1	<0.1
Nickel	µg/L	0.5	0.6	<0.5
Silver	µg/L	0.1	<0.1	<0.1
Tin	µg/L	0.2	<0.2	<0.2
Zinc	µg/L	1	<1	<1

Appendix B: Laboratory Certificates of Analysis

CERTIFICATE OF ANALYSIS

Work Order	EB1826430	Page	: 1 of 9		
Client	: QLD DEPT OF ENVIRONMENT & SCIENCE	Laboratory	: Environmental Division Bris	sbane	
Contact	: Justin Cagney	Contact	: Customer Services EB		
Address	: GPO BOX 2771	Address	: 2 Byth Street Stafford QLD	Australia 4053	
	BRISBANE QLD, AUSTRALIA 4001				
Telephone	:	Telephone	: +61-7-3243 7222		
Project	: Caley Valley	Date Samples Received	: 02-Nov-2018 09:15	awittin.	
Order number	:	Date Analysis Commenced	: 05-Nov-2018		
C-O-C number	:	Issue Date	: 16-Nov-2018 14:35		
Sampler	: SUZANNE VARDY			Hac-MRA	NATA
Site	:				
Quote number	: EN/222				creditation No. 825
No. of samples received	: 15				compliance with
No. of samples analysed	: 15			ISO/IE	C 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Gerrad Morgan	Asbestos Identifier	Newcastle - Inorganics, Mayfield West, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- EP075(SIM): High LCS recovery deemed acceptable as all associated analyte results are less than LOR.
- EA153: ALS does not hold NATA accreditation for Laser Particle Sizing.
- EG035T (Total Mercury) Sample EB1826430-002 (CV-T1-S2) shows poor matrix spike recovery due to sample heterogeneity. Confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): Sample EB1826430 010 (CV-CT1-S3) shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 9 Work Order : EB1826430 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : Caley Valley

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T1-S1	CV-T1-S2	CV-T1-S3	CV-T1-S4	CV-T2-S2
	Cli	ent sampli	ng date / time	31-Oct-2018 10:00	31-Oct-2018 10:20	31-Oct-2018 10:50	31-Oct-2018 11:15	31-Oct-2018 12:40
Compound	CAS Number	LOR	Unit	EB1826430-001	EB1826430-002	EB1826430-003	EB1826430-004	EB1826430-005
			-	Result	Result	Result	Result	Result
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	10500	9840	12600	21300	36600
A055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		1.0	%	11.4	30.1	43.5	25.6	5.8
A153: Laser Particle Size Analy	vsis of Soils and Solids							
0 +1000μm		1	%	-	-	-	-	-
G005T: Total Metals by ICP-AE								
Arsenic	7440-38-2	5	mg/kg	9	11	9	13	10
Barium	7440-39-3	10	mg/kg	90	50	20	30	30
Beryllium	7440-39-3	1	mg/kg	2	<1	<1	<1	<1
Boron	7440-41-7	50	mg/kg	50	<50	<50	70	<50
Cadmium	7440-42-8	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2	mg/kg	24	18	24	37	25
Cobalt	7440-47-3	2	mg/kg	52	15	16	16	12
Copper	7440-48-4	5	mg/kg	27	15	17	21	12
Lead	7439-92-1	5	mg/kg	9	12	6	7	8
Manganese		5	mg/kg	332	131	158	324	216
Nickel	7439-96-5	2	mg/kg	52	18	18	20	16
Selenium	7440-02-0 7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Vanadium		5	mg/kg	36	29	35	<5 51	36
Zinc	7440-62-2	5	mg/kg	158	47	62	53	67
	7440-66-6	5	ilig/kg	150	47	02	55	67
G035T: Total Recoverable Mer		0.4		-0.4	-0.4	-0.4	-0.1	10.1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P075(SIM)B: Polynuclear Arom								
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 4 of 9 Work Order : EB1826430 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : Caley Valley

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T1-S1	CV-T1-S2	CV-T1-S3	CV-T1-S4	CV-T2-S2	
	Cli	ent sampli	ng date / time	31-Oct-2018 10:00	31-Oct-2018 10:20	31-Oct-2018 10:50	31-Oct-2018 11:15	31-Oct-2018 12:40	
Compound	CAS Number	LOR	Unit	EB1826430-001	EB1826430-002	EB1826430-003	EB1826430-004	EB1826430-005	
				Result	Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons - Cont	inued							
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2	
EP075(SIM)S: Phenolic Compound Surroy	gates								
Phenol-d6	13127-88-3	0.5	%	176	126	132	132	123	
2-Chlorophenol-D4	93951-73-6	0.5	%	155	112	118	116	109	
2.4.6-Tribromophenol	118-79-6	0.5	%	171	112	106	122	113	
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	0.5	%	143	101	108	106	102	
Anthracene-d10	1719-06-8	0.5	%	138	99.1	109	99.8	97.0	
4-Terphenyl-d14	1718-51-0	0.5	%	141	106	111	99.1	98.4	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T2-S3	CV-T2-S4	CV-CT1-S1	CV-CT1-S2	CV-CT1-S3
	Cli	ent samplii	ng date / time	31-Oct-2018 12:30	31-Oct-2018 12:00	31-Oct-2018 13:55	31-Oct-2018 14:10	31-Oct-2018 14:30
Compound	CAS Number	LOR	Unit	EB1826430-006	EB1826430-007	EB1826430-008	EB1826430-009	EB1826430-010
				Result	Result	Result	Result	Result
A010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	18100	8720	12700	16800	11600
A055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		1.0	%	5.7	3.3	4.9	25.1	6.9
A153: Laser Particle Size Anal	vsis of Soils and Solids							
0 +1000μm		1	%		-	-	-	-
G005T: Total Metals by ICP-AE	-8							1
Arsenic	7440-38-2	5	mg/kg	13	<5	12	19	10
Barium	7440-39-3	10	mg/kg	20	20	20	30	20
Beryllium	7440-39-3	1	mg/kg	1	<1	<1	<1	<1
Boron	7440-42-8	50	mg/kg	60	<50	<50	60	<50
Cadmium	7440-42-8	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2	mg/kg	37	16	26	46	29
Cobalt	7440-48-4	2	mg/kg	19	8	16	20	14
Copper	7440-50-8	5	mg/kg	24	12	15	30	15
Lead	7440-50-8	5	mg/kg	7	5	7	9	7
Manganese	7439-92-1	5	mg/kg	188	98	601	391	462
Nickel	7439-90-3	2	mg/kg	25	11	14	23	15
Selenium	7440-02-0	5	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	5	mg/kg	51	24	51	93	48
Zinc	7440-62-2	5	mg/kg	71	24	25	40	24
		5	mg/kg	71	20	23	+0	24
G035T: Total Recoverable Mer Mercury		0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
-	7439-97-6	0.1	mg/kg	NO.1	-0.1	-0.1	~0.1	~0.1
P075(SIM)B: Polynuclear Arom		0.5		-0 F	-0 5	-0.5	-0 5	-0 5
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 6 of 9 Work Order : EB1826430 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : Caley Valley

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T2-S3	CV-T2-S4	CV-CT1-S1	CV-CT1-S2	CV-CT1-S3
	Cli	ent sampli	ng date / time	31-Oct-2018 12:30	31-Oct-2018 12:00	31-Oct-2018 13:55	31-Oct-2018 14:10	31-Oct-2018 14:30
Compound	CAS Number	LOR	Unit	EB1826430-006	EB1826430-007	EB1826430-008	EB1826430-009	EB1826430-010
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons - Cont	inued						
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP075(SIM)S: Phenolic Compound Surroy	gates							
Phenol-d6	13127-88-3	0.5	%	127	130	145	140	133
2-Chlorophenol-D4	93951-73-6	0.5	%	112	114	128	124	117
2.4.6-Tribromophenol	118-79-6	0.5	%	119	116	125	126	109
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	105	105	119	113	108
Anthracene-d10	1719-06-8	0.5	%	98.4	102	116	108	107
4-Terphenyl-d14	1718-51-0	0.5	%	99.0	103	114	109	104

Page : 7 of 9 Work Order : EB1826430 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : Caley Valley

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-CT1-S4	CV-CT2-S2	CV-CT2-S3	CV-CT2-S4	CV-T3-S1
	Cli	ent samplii	ng date / time	31-Oct-2018 14:50	31-Oct-2018 15:50	31-Oct-2018 15:30	31-Oct-2018 15:15	31-Oct-2018 17:00
Compound	CAS Number	LOR	Unit	EB1826430-011	EB1826430-012	EB1826430-013	EB1826430-014	EB1826430-015
			-	Result	Result	Result	Result	Result
A010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	22000	12700	21700	23600	24400
A055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		1.0	%	8.8	4.9	4.4	2.3	3.0
A153: Laser Particle Size Analy	vsis of Soils and Solids							
9+1000μm		1	%		-	-	-	
G005T: Total Metals by ICP-AE								
Arsenic	7440-38-2	5	mg/kg	15	18	12	9	7
Barium	7440-39-3	10	mg/kg	40	40	40	20	20
Beryllium	7440-39-3	1	mg/kg	1	1	<1	<1	<1
Boron	7440-41-7	50	mg/kg	100	60	70	60	<50
Cadmium	7440-42-8	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2		46	46	44	28	20
Cobalt		2	mg/kg mg/kg	20	25	23	12	10
	7440-48-4	5		20	25	23	12	10
Copper	7440-50-8		mg/kg		13			
Lead	7439-92-1	5	mg/kg	11	-	11	7	6
Manganese	7439-96-5	5	mg/kg	1280	2160	725	641	481
Nickel	7440-02-0	2	mg/kg	22	24	23	14	10
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	5	mg/kg	72	79	71	45	34
Zinc	7440-66-6	5	mg/kg	35	40	35	23	17
G035T: Total Recoverable Me	rcury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P075(SIM)B: Polynuclear Arom	natic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 8 of 9 Work Order : EB1826430 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : Caley Valley

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-CT1-S4	CV-CT2-S2	CV-CT2-S3	CV-CT2-S4	CV-T3-S1
	Cli	ent sampli	ng date / time	31-Oct-2018 14:50	31-Oct-2018 15:50	31-Oct-2018 15:30	31-Oct-2018 15:15	31-Oct-2018 17:00
Compound	CAS Number	LOR	Unit	EB1826430-011	EB1826430-012	EB1826430-013	EB1826430-014	EB1826430-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons - Cont	inued						
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP075(SIM)S: Phenolic Compound Surroy	gates							
Phenol-d6	13127-88-3	0.5	%	129	113	106	116	156
2-Chlorophenol-D4	93951-73-6	0.5	%	111	114	109	120	156
2.4.6-Tribromophenol	118-79-6	0.5	%	107	82.9	78.6	87.0	111
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	104	117	112	118	153
Anthracene-d10	1719-06-8	0.5	%	102	128	120	125	157
4-Terphenyl-d14	1718-51-0	0.5	%	99.9	129	122	126	166

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)		
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	13127-88-3	35	155	
2-Chlorophenol-D4	93951-73-6	42	153	
2.4.6-Tribromophenol	118-79-6	26	157	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	34	157	
Anthracene-d10	1719-06-8	37	153	
4-Terphenyl-d14	1718-51-0	42	172	

CERTIFICATE OF ANALYSIS

Work Order	EB1901827	Page	: 1 of 8	
Client	: QLD DEPT OF ENVIRONMENT & SCIENCE	Laboratory	: Environmental Division Bris	sbane
Contact	: Justin Cagney	Contact	: Customer Services EB	
Address	: GPO BOX 2771	Address	: 2 Byth Street Stafford QLD	Australia 4053
	BRISBANE QLD, AUSTRALIA 4001			
Telephone	:	Telephone	: +61-7-3243 7222	
Project	:	Date Samples Received	: 25-Jan-2019 09:15	ANIIIIII.
Order number	:	Date Analysis Commenced	: 25-Jan-2019	
C-O-C number	:	Issue Date	: 05-Feb-2019 10:59	
Sampler	: SUSI VARDY			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 4			Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Matt Frost	Senior Organic Chemist	Brisbane Organics, Stafford, QLD
Tom Maloney	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - ^ = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- EG093-F (Dissolved Metals in Saline Water by ORC-ICP-MS): High LCS recovery deemed acceptable as all associated analyte results are less than LOR.
- It is recognised that EG093-T (Total Metals in Saline Water by ORC-ICP-MS) is less than EG093-F (Dissolved Metals in Saline Water by ORC-ICP-MS) for some samples. However, the difference is within experimental variation of the methods.
- It is recognised that EG094-T (Total Metals in Fresh Water by ORC-ICP-MS) is less than EG094-F (Dissolved Metals in Fresh Water by ORC-ICP-MS) for sample EB1901827-001(CV-SWC-0119). However, the
 difference is within experimental variation of the methods.
- Ionic Balance out of acceptable limits for some samples due to analytes not quantified in this report.
- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 8 Work Order : EB1901827 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Cli CAS Number	ient samplii LOR 0.01	ng date / time Unit	23-Jan-2019 00:00 EB1901827-001	23-Jan-2019 00:00 EB1901827-002	23-Jan-2019 00:00	23-Jan-2019 00:00	
		Unit		EB1901827-002		1	
	0.01	-			EB1901827-003	EB1901827-004	
	0.01		Result	Result	Result	Result	
	0.01						
	0.01	pH Unit	7.80	8.66	8.91	9.01	
	1	µS/cm	1240	22400	64300	30500	
Conductivity)							
	1	mg/L	806	14600	41800	19800	
104 + 2°C		_				I	
	5	mg/L	40	288	<5	38	
	1	mg/L	185	3490	7600	3360	
DMO-210-001	1	ma/l	<1	<1	<1	<1	
		-					
						-	
						37	
		5					
	1	mg/L	26	1150	3350	461	
14000 70 0							
16887 00 6	1	ma/l	298	7710	23400	10300	
10007-00-0	•	ing/E	200	1110	20400	10000	
7440 70 2	1	mg/l	28	328	538	336	
		-	-				
			-				
1- 1 0-03-1	·	<u></u>					
7/30-07 6	0.0001	mg/l	<0.0001	<0.0001	<0.0001	<0.0001	
	0.0001		-0.0001	-0.0001	-0.0001	-0.0001	
	0.0001	mg/l	<0.0001	<0.0001	<0.0001	<0.0001	
		iiig/L	NU.UUU	NO.0001	~0.0001	N.0001	
		ua//		<0 E	<0.5	<0.5	
	Conductivity) 104 ± 2°C DMO-210-001 3812-32-6 71-52-3 2- by DA 14808-79-8 2- by DA 16887-00-6 7440-70-2 7439-97-6 FIMS 7439-97-6	Conductivity) 1 104 ± 2°C 5 5 1 DMO-210-001 1 3812-32-6 1 71-52-3 1 1 2- by DA 1 16887-00-6 1 7440-70-2 1 7439-95-4 1 7439-97-6 0.0001 7439-97-6 0.0001 FIMS 7440-36-0 0.5 7440-38-2 0.5 7440-38-2 0.5 7440-41-7 0.1	Conductivity) 1 mg/L 104 ± 2°C 5 mg/L 5 mg/L 5 mg/L 1 mg/L 1 mg/L 1 mg/L 1 mg/L 1 mg/L 3812-32-6 1 mg/L 1 mg/L	Conductivity) Image of the second seco	Conductivity) Img/L 806 14600 104 $\pm 2^{\circ}$ C Img/L 806 14600 Img/L 40 288 Img/L 185 3490 Img/L 185 3490 Img/L 185 3490 Img/L 185 3490 Img/L 11 11 3812-32-6 1 mg/L 14 71-52-3 1 mg/L 167 21 Img/L 1667 35 21 35 2- by DA Img/L 26 1150 150 Img/L 28 328 7710 16887-00-6 1 mg/L 28 649 7440-70-2 1 mg/L 28 649 140 197 16887-00-6 1 mg/L 167 5940 197 16887-00-7 1 mg/L 167 5940 197 7440-70-2 1 mg/L 167 5940	Conductivity) I mg/L 806 14600 41800 104 $\pm 2^{\circ}$ C 5 mg/L 40 288 <5	Conductivity) mg/L 806 14600 41800 19800 104 ± 2*C 5 mg/L 40 288 <5

Page : 4 of 8 Work Order : EB1901827 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-SWC-0119	CV-T1S4-0119	CV-B0-0119	CV-CT1S4-0119	
· · · · · · · · · · · · · · · · · · ·	Cli	ient sampli	ng date / time	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1901827-001	EB1901827-002	EB1901827-003	EB1901827-004	
				Result	Result	Result	Result	
EG093F: Dissolved Metals in Sa	aline Water by ORC-ICPM	S - Continu	led					
Chromium	7440-47-3	0.5	µg/L		<0.5	<0.5	<0.5	
Cobalt	7440-48-4	0.2	µg/L		0.6	<0.2	<0.2	
Copper	7440-50-8	1	µg/L		<1	2	<1	
Lead	7439-92-1	0.2	µg/L		<0.2	<0.2	<0.2	
Manganese	7439-96-5	0.5	µg/L		<0.5	<0.5	<0.5	
Molybdenum	7439-98-7	0.1	µg/L		27.7	9.9	38.6	
Nickel	7440-02-0	0.5	µg/L		3.5	0.5	1.4	
Selenium	7782-49-2	2	µg/L		<2	7	2	
Silver	7440-22-4	0.1	µg/L		<0.1	<0.1	<0.1	
Tin	7440-31-5	5	µg/L		<5	<5	<5	
Zinc	7440-66-6	5	µg/L		<5	<5	<5	
EG093T: Total Metals in Saline	Water by ORC-ICPMS							
Antimony	7440-36-0	0.5	µg/L		<0.5	<0.5	<0.5	
Arsenic	7440-38-2	0.5	µg/L		5.3	1.6	3.8	
Beryllium	7440-41-7	0.1	µg/L		<0.1	<0.1	<0.1	
Boron	7440-42-8	100	µg/L		1250	4780	1800	
Cadmium	7440-43-9	0.2	µg/L		<0.2	<0.2	<0.2	
Chromium	7440-47-3	0.5	µg/L		6.6	0.7	3.1	
Cobalt	7440-48-4	0.2	µg/L		3.4	0.6	1.5	
Copper	7440-50-8	1	µg/L		2	1	1	
Lead	7439-92-1	0.2	µg/L		1.0	<0.2	0.5	
Manganese	7439-96-5	0.5	µg/L		143	44.3	103	
Molybdenum	7439-98-7	0.1	µg/L		25.9	10.8	36.6	
Nickel	7440-02-0	0.5	µg/L		5.2	<0.5	2.0	
Selenium	7782-49-2	2	µg/L		2	7	3	
Silver	7440-22-4	0.1	µg/L		<0.1	<0.1	<0.1	
Tin	7440-31-5	5	µg/L		<5	<5	5	
Zinc	7440-66-6	5	µg/L		68	<5	<5	
EG094F: Dissolved Metals in Fi	resh Water by ORC-ICPMS	;						
Antimony	7440-36-0	0.2	µg/L	<0.2				
Selenium	7782-49-2	0.2	µg/L	0.5				
Arsenic	7440-38-2	0.2	µg/L	2.2				
Beryllium	7440-41-7	0.1	µg/L	<0.1				
Boron	7440-42-8	5	μg/L	137				

Page : 5 of 8 Work Order : EB1901827 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-SWC-0119	CV-T1S4-0119	CV-B0-0119	CV-CT1S4-0119	
	Cli	ient sampli	ng date / time	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1901827-001	EB1901827-002	EB1901827-003	EB1901827-004	
,			-	Result	Result	Result	Result	
EG094F: Dissolved Metals in F	resh Water by ORC-ICPMS	- Continu	ed					
Cadmium	7440-43-9	0.05	µg/L	<0.05				
Chromium	7440-47-3	0.2	µg/L	<0.2				
Cobalt	7440-48-4	0.1	µg/L	1.0				
Copper	7440-50-8	0.5	µg/L	0.6				
Lead	7439-92-1	0.1	µg/L	<0.1				
Manganese	7439-96-5	0.5	µg/L	286				
Molybdenum	7439-98-7	0.1	µg/L	1.6				
Nickel	7440-02-0	0.5	µg/L	1.6				
Silver	7440-22-4	0.1	µg/L	<0.1				
Tin	7440-31-5	0.2	µg/L	<0.2				
Zinc	7440-66-6	1	µg/L	<1				
EG094T: Total metals in Fresh	water by ORC-ICPMS							
Antimony	7440-36-0	0.2	µg/L	<0.2				
Selenium	7782-49-2	0.2	µg/L	0.4				
Arsenic	7440-38-2	0.2	µg/L	2.5				
Beryllium	7440-41-7	0.1	µg/L	0.1				
Boron	7440-42-8	5	µg/L	150				
Cadmium	7440-43-9	0.05	µg/L	<0.05				
Chromium	7440-47-3	0.2	µg/L	5.2				
Cobalt	7440-48-4	0.1	µg/L	3.5				
Copper	7440-50-8	0.5	µg/L	3.8				
Lead	7439-92-1	0.1	µg/L	1.4				
Manganese	7439-96-5	0.5	µg/L	702				
Molybdenum	7439-98-7	0.1	µg/L	1.8				
Nickel	7440-02-0	0.5	µg/L	3.5				
Silver	7440-22-4	0.1	µg/L	<0.1				
Tin	7440-31-5	0.2	µg/L	<0.2				
Zinc	7440-66-6	1	µg/L	8				
EK040P: Fluoride by PC Titrato	or							
Fluoride	16984-48-8	0.1	mg/L	0.2	0.5	0.9	0.5	
EN055: Ionic Balance								
Total Anions		0.01	meq/L	12.3	242	732	301	
Total Cations		0.01	meq/L	11.2	333	726	314	
Ionic Balance		0.01	%	4.52	15.8	0.43	2.21	

Page : 6 of 8 Work Order : EB1901827 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-SWC-0119	CV-T1S4-0119	CV-B0-0119	CV-CT1S4-0119	
	Cli	ient sampli	ng date / time	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1901827-001	EB1901827-002	EB1901827-003	EB1901827-004	
				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Arom	natic Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	
Sum of polycyclic aromatic hydro	carbons	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
Senzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	
Ethylbenzene	100-41-4	2	μg/L	<2	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	
∖ Total Xylenes		2	µg/L	<2	<2	<2	<2	
[^] Sum of BTEX		1	µg/L	<1	<1	<1	<1	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	
EP075(SIM)S: Phenolic Compou	Ind Surrogates							
Phenol-d6	13127-88-3	1.0	%	29.7	32.0	35.1	26.7	
2-Chlorophenol-D4	93951-73-6	1.0	%	69.2	54.5	51.8	36.3	
2.4.6-Tribromophenol	118-79-6	1.0	%	63.2	36.6	21.8	19.3	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	70.4	73.4	76.1	83.6	
Anthracene-d10	1719-06-8	1.0	%	92.6	96.6	112	92.6	

Page : 7 of 8 Work Order : EB1901827 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-SWC-0119	CV-T1S4-0119	CV-B0-0119	CV-CT1S4-0119	
	Cli	ient sampli	ng date / time	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	23-Jan-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1901827-001	EB1901827-002	EB1901827-003	EB1901827-004	
				Result	Result	Result	Result	
EP075(SIM)T: PAH Surrogates - Continued	I							
4-Terphenyl-d14	1718-51-0	1.0	%	118	120	146	120	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	107	105	104	108	
Toluene-D8	2037-26-5	2	%	98.9	98.7	95.1	98.4	
4-Bromofluorobenzene	460-00-4	2	%	98.8	100	99.2	97.9	

Surrogate Control Limits

Sub-Matrix: WATER		Recove	ry Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	10	72
2-Chlorophenol-D4	93951-73-6	27	130
2.4.6-Tribromophenol	118-79-6	19	181
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	14	146
Anthracene-d10	1719-06-8	35	137
4-Terphenyl-d14	1718-51-0	36	154
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	66	138
Toluene-D8	2037-26-5	79	120
4-Bromofluorobenzene	460-00-4	74	118

CERTIFICATE OF ANALYSIS

Work Order	EB1905872	Page	: 1 of 19	
Client	: QLD DEPT OF ENVIRONMENT & SCIENCE	Laboratory	: Environmental Division Bri	sbane
Contact	: MS SUZANNE VARDY	Contact	: Customer Services EB	
Address	: PO BOX 2001	Address	: 2 Byth Street Stafford QLD	Australia 4053
	MACKAY QLD, AUSTRALIA 4740			
Telephone	: +61 07 49360540	Telephone	: +61-7-3243 7222	
Project		Date Samples Received	: 08-Mar-2019 09:15	ANHUR.
Order number	:	Date Analysis Commenced	: 08-Mar-2019	
C-O-C number	:	Issue Date	: 15-Mar-2019 08:42	
Sampler	: SUZANNE VARDY			AC-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 16			Accredited for compliance with
No. of samples analysed	: 16			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG035T (Total Mercury): Sample EB1905872-013 (CV-T1-S2-0319) shows poor matrix spike recovery due to matrix interference. Confirmed by visual inspection.
- EA153: ALS does not hold NATA accreditation for Laser Particle Sizing.
- Super Trace PAH analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- It is recognised that EG094-T (Total Metals in Fresh Water by ORC-ICP-MS) is less than EG094-F (Dissolved Metals in Fresh Water by ORC-ICP-MS) for some samples. However, the difference is within experimental variation of the methods.
- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	CV-T1-S1-0319	CV-T1-S2-0319	CV-T1-S3-0319	CV-T2-S3-0319	CV-T2-S2-0319
	Cl	ient samplii	ng date / time	05-Mar-2019 12:40	05-Mar-2019 14:10	05-Mar-2019 14:55	06-Mar-2019 10:40	06-Mar-2019 10:00
Compound	CAS Number	LOR	Unit	EB1905872-012	EB1905872-013	EB1905872-014	EB1905872-015	EB1905872-016
			-	Result	Result	Result	Result	Result
A010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	362	1100	626	584	496
A055: Moisture Content (Dried	I @ 105-110°C)							
Moisture Content		1.0	%	46.9	46.8	38.2	47.3	43.7
A153: Laser Particle Size Anal	vsis of Soils and Solids							
^φ +1000μm		1	%	4	4	5	13	4
G005(ED093)T: Total Metals by	v ICP-AES							
Arsenic	7440-38-2	5	mg/kg	6	5	7	12	7
Barium	7440-39-3	10	mg/kg	30	70	10	30	20
Beryllium	7440-41-7	1	mg/kg	1	1	<1	1	<1
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	20	18	16	26	21
Cobalt	7440-48-4	2	mg/kg	31	27	9	18	12
Copper	7440-50-8	5	mg/kg	17	25	13	17	18
Lead	7439-92-1	5	mg/kg	8	8	5	8	<5
Manganese	7439-96-5	5	mg/kg	255	285	62	174	88
Nickel	7440-02-0	2	mg/kg	30	25	11	20	16
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	5	mg/kg	33	34	30	46	36
Zinc	7440-66-6	5	mg/kg	118	80	47	64	65
G035T: Total Recoverable Me	rcury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
P074A: Monocyclic Aromatic I	Hvdrocarbons							
Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Isopropylbenzene	98-82-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
n-Propylbenzene	103-65-1	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.3.5-Trimethylbenzene	108-67-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	135-98-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2.4-Trimethylbenzene	95-63-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	98-06-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
p-Isopropyltoluene	99-87-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
n-Butylbenzene	104-51-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
P074B: Oxygenated Compoun	ids							
Vinyl Acetate	108-05-4	5	mg/kg	<5	<5	<5	<5	<5

Page : 4 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T1-S1-0319	CV-T1-S2-0319	CV-T1-S3-0319	CV-T2-S3-0319	CV-T2-S2-0319
,	Cli	ent samplii	ng date / time	05-Mar-2019 12:40	05-Mar-2019 14:10	05-Mar-2019 14:55	06-Mar-2019 10:40	06-Mar-2019 10:00
Compound	CAS Number	LOR	Unit	EB1905872-012	EB1905872-013	EB1905872-014	EB1905872-015	EB1905872-016
			-	Result	Result	Result	Result	Result
EP074B: Oxygenated Compounds -	Continued							
2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5	<5	<5	<5
4-Methyl-2-pentanone (MIBK)	108-10-1	5	mg/kg	<5	<5	<5	<5	<5
2-Hexanone (MBK)	591-78-6	5	mg/kg	<5	<5	<5	<5	<5
P074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2-Dichloropropane	78-87-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1.3-Dichloropropylene	10061-01-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1.3-Dichloropropylene	10061-02-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2-Dibromoethane (EDB)	106-93-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP074E: Halogenated Aliphatic Com								
Dichlorodifluoromethane	75-71-8	5	mg/kg	<5	<5	<5	<5	<5
Chloromethane	74-87-3	5	mg/kg	<5	<5	<5	<5	<5
Vinyl chloride	75-01-4	5	mg/kg	<5	<5	<5	<5	<5
Bromomethane	74-83-9	5	mg/kg	<5	<5	<5	<5	<5
Chloroethane	75-00-3	5	mg/kg	<5	<5	<5	<5	<5
Trichlorofluoromethane	75-69-4	5	mg/kg	<5	<5	<5	<5	<5
1.1-Dichloroethene	75-35-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
lodomethane	74-88-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1.2-Dichloroethene	156-60-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.1-Dichloroethane	75-34-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1.2-Dichloroethene	156-59-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.1.1-Trichloroethane	71-55-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.1-Dichloropropylene	563-58-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	56-23-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2-Dichloroethane	107-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene	79-01-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromomethane	74-95-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.1.2-Trichloroethane	79-00-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.3-Dichloropropane	142-28-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	127-18-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.1.1.2-Tetrachloroethane	630-20-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1.4-Dichloro-2-butene	110-57-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 5 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T1-S1-0319	CV-T1-S2-0319	CV-T1-S3-0319	CV-T2-S3-0319	CV-T2-S2-0319
	Cli	ent samplii	ng date / time	05-Mar-2019 12:40	05-Mar-2019 14:10	05-Mar-2019 14:55	06-Mar-2019 10:40	06-Mar-2019 10:00
Compound	CAS Number	LOR	Unit	EB1905872-012	EB1905872-013	EB1905872-014	EB1905872-015	EB1905872-016
			-	Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Comp	oounds - Continued							
cis-1.4-Dichloro-2-butene	1476-11-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.1.2.2-Tetrachloroethane	79-34-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2.3-Trichloropropane	96-18-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachloroethane	76-01-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2-Dibromo-3-chloropropane	96-12-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP074F: Halogenated Aromatic Com	pounds							
Chlorobenzene	108-90-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromobenzene	108-86-1	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorotoluene	95-49-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chlorotoluene	106-43-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1.2.3-Trichlorobenzene	87-61-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP074G: Trihalomethanes								
Chloroform	67-66-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	75-27-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	124-48-1	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoform	75-25-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fraction	າຣ					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100

Page : 6 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	CV-T1-S1-0319	CV-T1-S2-0319	CV-T1-S3-0319	CV-T2-S3-0319	CV-T2-S2-0319
	Cli	ient sampli	ing date / time	05-Mar-2019 12:40	05-Mar-2019 14:10	05-Mar-2019 14:55	06-Mar-2019 10:40	06-Mar-2019 10:00
Compound	CAS Number	LOR	Unit	EB1905872-012	EB1905872-013	EB1905872-014	EB1905872-015	EB1905872-016
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns - Continued					
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.5	%	71.3	74.3	110	92.9	89.8
Toluene-D8	2037-26-5	0.5	%	77.5	75.7	89.9	96.9	90.6
4-Bromofluorobenzene	460-00-4	0.5	%	87.0	85.8	99.9	108	90.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	79.5	83.4	123	108	103
Toluene-D8	2037-26-5	0.2	%	69.8	68.3	81.0	87.4	81.7
4-Bromofluorobenzene	460-00-4	0.2	%	85.9	88.7	100	111	84.8

Page : 7 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-C-C0319	CV-T1-S4-0319	CV-FW-0319	CV-CC1-0319	CV-C-C2-0319
	Cl	ient sampliı	ng date / time	06-Mar-2019 14:20	06-Mar-2019 09:40	06-Mar-2019 13:50	06-Mar-2019 13:55	06-Mar-2019 13:40
Compound	CAS Number	LOR	Unit	EB1905872-001	EB1905872-002	EB1905872-003	EB1905872-004	EB1905872-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	9.85	7.69	8.13	8.70	8.93
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	4080	2460	2650	4140	4140
A016: Calculated TDS (from Electric	al Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L	2650	1600	1720	2690	2690
A025: Total Suspended Solids dried	at 104 ± 2°C							
Suspended Solids (SS)		5	mg/L	<5	10	90	5	6
A065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	375	280	292	383	375
D037P: Alkalinity by PC Titrator			-					
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	7	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	48	<1	<1	16	28
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	99	97	48	34
Total Alkalinity as CaCO3		1	mg/L	54	99	97	64	62
D041G: Sulfate (Turbidimetric) as SC)4 2- by DA		_					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	107	131	132	109	110
ED045G: Chloride by Discrete Analys			, i i i i i i i i i i i i i i i i i i i					
Chloride	16887-00-6	1	mg/L	1250	704	766	1270	1260
D093F: Dissolved Major Cations			3					
Calcium	7440-70-2	1	mg/L	38	33	33	38	38
Magnesium	7439-95-4	1	mg/L	68	48	51	70	68
Sodium	7440-23-5	1	mg/L	686	395	431	692	685
Potassium	7440-09-7	1	mg/L	24	16	17	24	24
G035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
G035T: Total Recoverable Mercury I								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
G094F: Dissolved Metals in Fresh W								
Antimony	7440-36-0	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	7440-38-0	0.2	μg/L	0.6	0.4	0.4	0.6	0.5
Arsenic	7440-38-2	0.2	μg/L	2.0	1.6	1.8	2.4	2.4
Beryllium	7440-38-2	0.1	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	7440-42-8	5	μg/L	220	187	179	237	251

Page : 8 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-C-C0319	CV-T1-S4-0319	CV-FW-0319	CV-CC1-0319	CV-C-C2-0319
	Cl	ient samplii	ng date / time	06-Mar-2019 14:20	06-Mar-2019 09:40	06-Mar-2019 13:50	06-Mar-2019 13:55	06-Mar-2019 13:40
Compound	CAS Number	LOR	Unit	EB1905872-001	EB1905872-002	EB1905872-003	EB1905872-004	EB1905872-005
			-	Result	Result	Result	Result	Result
G094F: Dissolved Metals in F	resh Water by ORC-ICPMS	- Continu	ed					
Cadmium	7440-43-9	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chromium	7440-47-3	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	7440-48-4	0.1	µg/L	0.3	0.6	0.5	0.4	0.4
Copper	7440-50-8	0.5	µg/L	2.1	<0.5	<0.5	<0.5	0.5
Lead	7439-92-1	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Manganese	7439-96-5	0.5	µg/L	4.6	119	49.3	48.2	38.7
Molybdenum	7439-98-7	0.1	µg/L	4.3	5.6	5.2	4.1	4.1
Nickel	7440-02-0	0.5	µg/L	0.6	2.6	2.1	0.6	0.6
Silver	7440-22-4	0.1	µg/L	0.2	<0.1	0.2	<0.1	<0.1
Tin	7440-31-5	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc	7440-66-6	1	µg/L	<1	<1	<1	<1	<1
EG094T: Total metals in Fresh	water by ORC-ICPMS							
Antimony	7440-36-0	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	7782-49-2	0.2	µg/L	1.0	0.5	0.6	0.9	1.0
Arsenic	7440-38-2	0.2	µg/L	2.1	2.0	3.1	2.7	2.6
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	7440-42-8	5	µg/L	235	174	180	253	254
Cadmium	7440-43-9	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chromium	7440-47-3	0.2	µg/L	<0.2	<0.2	2.1	<0.2	<0.2
Cobalt	7440-48-4	0.1	µg/L	0.3	0.9	2.3	0.4	0.6
Copper	7440-50-8	0.5	µg/L	<0.5	0.6	1.8	<0.5	<0.5
Lead	7439-92-1	0.1	µg/L	<0.1	<0.1	0.5	<0.1	<0.1
Manganese	7439-96-5	0.5	µg/L	14.9	201	176	62.6	54.8
Molybdenum	7439-98-7	0.1	µg/L	4.5	5.5	5.4	4.2	4.4
Nickel	7440-02-0	0.5	µg/L	<0.5	2.5	3.7	0.6	0.6
Silver	7440-22-4	0.1	µg/L	0.2	<0.1	<0.1	<0.1	<0.1
Tin	7440-31-5	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc	7440-66-6	1	μg/L	<1	1	9	<1	<1
EK040P: Fluoride by PC Titrato	or							
Fluoride	16984-48-8	0.1	mg/L	0.2	0.3	0.3	0.2	0.2
EN055: Ionic Balance								
Total Anions		0.01	meq/L	38.6	24.6	26.3	39.4	39.1
Total Cations		0.01	meq/L	37.9	23.2	25.0	38.4	37.9
Ionic Balance		0.01	%	0.81	2.88	2.47	1.29	1.52

Page : 9 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-C-C0319	CV-T1-S4-0319	CV-FW-0319	CV-CC1-0319	CV-C-C2-0319
	Cl	ient samplii	ng date / time	06-Mar-2019 14:20	06-Mar-2019 09:40	06-Mar-2019 13:50	06-Mar-2019 13:55	06-Mar-2019 13:40
Compound	CAS Number	LOR	Unit	EB1905872-001	EB1905872-002	EB1905872-003	EB1905872-004	EB1905872-005
				Result	Result	Result	Result	Result
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
∖ Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	μg/L	<5	<5	<5	<5	<5
EP132B: Polynuclear Aromatic F	lydrocarbon <u>s</u>							
Naphthalene	91-20-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthylene	208-96-8	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthene	83-32-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	86-73-7	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Phenanthrene	85-01-8	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Anthracene	120-12-7	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Fluoranthene	206-44-0	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	129-00-0	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Benz(a)anthracene	56-55-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Chrysene	218-01-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	207-08-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(a)pyrene	50-32-8	0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Indeno(1.2.3.cd)pyrene	193-39-5	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Dibenz(a.h)anthracene	53-70-3	0.02	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(g.h.i)perylene	191-24-2	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
^ Total PAH		0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
^ Benzo(a)pyrene TEQ (zero)		0.005	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EP080S: TPH(V)/BTEX Surrogate	S							
1.2-Dichloroethane-D4	17060-07-0	2	%	104	103	99.7	102	101
Toluene-D8	2037-26-5	2	%	90.3	96.1	94.9	92.6	96.0
4-Bromofluorobenzene	460-00-4	2	%	97.0	104	99.0	103	104
EP132T: Base/Neutral Extractabl	e Surrogate <u>s (Low-Leve</u>	I)						
2-Fluorobiphenyl	321-60-8	0.02	%	108	105	112	111	112
Anthracene-d10	1719-06-8	0.02	%	109	112	105	98.1	114

Sub-Matrix: WATER (Matrix: WATER)		Clie	nt sample ID	CV-C-C0319	CV-T1-S4-0319	CV-FW-0319	CV-CC1-0319	CV-C-C2-0319
	Clien	t samplin	g date / time	06-Mar-2019 14:20	06-Mar-2019 09:40	06-Mar-2019 13:50	06-Mar-2019 13:55	06-Mar-2019 13:40
Compound	CAS Number	LOR	Unit	EB1905872-001	EB1905872-002	EB1905872-003	EB1905872-004	EB1905872-005
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	e Surrogates (Low-Level) -	Continu	ed					
4-Terphenyl-d14	1718-51-0	0.02	%	116	120	114	117	116

Page : 11 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-T1-S1-0319	CV-SW-C-0319	CV-BO-0319	CV-BI-0319	CV-EB-0319
	Cl	ient sampli	ng date / time	05-Mar-2019 12:05	05-Mar-2019 08:45	06-Mar-2019 16:00	06-Mar-2019 10:00	06-Mar-2019 15:45
Compound	CAS Number	LOR	Unit	EB1905872-006	EB1905872-007	EB1905872-008	EB1905872-009	EB1905872-010
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.17	7.71	9.69		9.63
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1540	970	2280		2480
EA016: Calculated TDS (from Electric	al Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L	1000	630	1480		1610
A025: Total Suspended Solids dried	at 104 + 2°C		_					1
Suspended Solids (SS)		5	mg/L	24	10	17		91
EA065: Total Hardness as CaCO3			<u> </u>					
Total Hardness as CaCO3		1	mg/L	227	175	209		237
ED037P: Alkalinity by PC Titrator		•	····					
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1		<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	53		61
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	99	103	6		9
Total Alkalinity as CaCO3	71-52-5	1	mg/L	99	103	59		70
-		•	iiig/E		100			
ED041G: Sulfate (Turbidimetric) as So Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	164	26	66		73
		I	ing/E	104	20	00		15
ED045G: Chloride by Discrete Analys Chloride		1	ma/l	323	258	711		766
	16887-00-6	I	mg/L	323	230	<i>1</i> 11		/00
ED093F: Dissolved Major Cations		4						
Calcium	7440-70-2	1	mg/L	35	29	21		24
Magnesium	7439-95-4	1	mg/L	34	25	38		43
Sodium	7440-23-5	1	mg/L	212	132	376		408
Potassium	7440-09-7	1	mg/L	10	5	15		17
EG035F: Dissolved Mercury by FIMS			ä					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
G035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
G094F: Dissolved Metals in Fresh W	ater by ORC-ICPM							
Antimony	7440-36-0	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	7782-49-2	0.2	µg/L	0.3	0.2	0.4	<0.2	0.4
Arsenic	7440-38-2	0.2	µg/L	1.4	0.7	2.4	<0.2	2.3
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	7440-42-8	5	µg/L	116	58	176	8	192

Page : 12 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-T1-S1-0319	CV-SW-C-0319	CV-BO-0319	CV-BI-0319	CV-EB-0319
	Cl	ient samplii	ng date / time	05-Mar-2019 12:05	05-Mar-2019 08:45	06-Mar-2019 16:00	06-Mar-2019 10:00	06-Mar-2019 15:45
Compound	CAS Number	LOR	Unit	EB1905872-006	EB1905872-007	EB1905872-008	EB1905872-009	EB1905872-010
				Result	Result	Result	Result	Result
G094F: Dissolved Metals in F	resh Water by ORC-ICPMS	- Continu	ed					
Cadmium	7440-43-9	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chromium	7440-47-3	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	7440-48-4	0.1	µg/L	1.9	0.6	0.4	<0.1	0.3
Copper	7440-50-8	0.5	µg/L	<0.5	0.5	1.4	<0.5	1.5
Lead	7439-92-1	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Manganese	7439-96-5	0.5	µg/L	520	54.5	2.7	<0.5	4.2
Molybdenum	7439-98-7	0.1	µg/L	5.2	0.8	3.1	<0.1	3.6
Nickel	7440-02-0	0.5	µg/L	4.7	1.1	1.0	<0.5	1.0
Silver	7440-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	7440-31-5	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc	7440-66-6	1	µg/L	<1	<1	<1	<1	<1
G094T: Total metals in Fresh	water by ORC-ICPMS							
Antimony	7440-36-0	0.2	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium	7782-49-2	0.2	µg/L	0.4	0.2	0.5	<0.2	0.5
Arsenic	7440-38-2	0.2	µg/L	2.2	0.7	2.6	<0.2	2.8
Beryllium	7440-41-7	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	7440-42-8	5	µg/L	129	59	198	<5	213
Cadmium	7440-43-9	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chromium	7440-47-3	0.2	µg/L	3.6	<0.2	<0.2	<0.2	1.8
Cobalt	7440-48-4	0.1	µg/L	5.4	0.7	0.7	<0.1	1.4
Copper	7440-50-8	0.5	µg/L	2.2	0.6	2.0	<0.5	2.8
Lead	7439-92-1	0.1	µg/L	0.6	<0.1	0.1	<0.1	0.4
Manganese	7439-96-5	0.5	µg/L	678	110	37.8	<0.5	85.0
Molybdenum	7439-98-7	0.1	µg/L	5.9	0.9	3.4	<0.1	3.6
Nickel	7440-02-0	0.5	µg/L	7.1	1.0	1.3	0.6	2.1
Silver	7440-22-4	0.1	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	7440-31-5	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc	7440-66-6	1	µg/L	12	<1	<1	<1	2
K040P: Fluoride by PC Titrato	or							
Fluoride	16984-48-8	0.1	mg/L	0.3	0.1	0.2		0.2
N055: Ionic Balance								
Total Anions		0.01	meq/L	14.5	9.88	22.6		24.5
Total Cations		0.01	meq/L	14.0	9.37	20.9		22.9
Ionic Balance		0.01	%	1.69	2.61	3.90		3.39

Page : 13 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-T1-S1-0319	CV-SW-C-0319	CV-BO-0319	CV-BI-0319	CV-EB-0319
	Cl	ient sampliı	ng date / time	05-Mar-2019 12:05	05-Mar-2019 08:45	06-Mar-2019 16:00	06-Mar-2019 10:00	06-Mar-2019 15:45
Compound	CAS Number	LOR	Unit	EB1905872-006	EB1905872-007	EB1905872-008	EB1905872-009	EB1905872-010
				Result	Result	Result	Result	Result
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1		<1
Toluene	108-88-3	2	µg/L	<2	<2	<2		<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2		<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2		<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2		<2
^ Total Xylenes		2	µg/L	<2	<2	<2		<2
^ Sum of BTEX		1	µg/L	<1	<1	<1		<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5		<5
EP132B: Polynuclear Aromatic F	lydrocarbons							
Naphthalene	91-20-3	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Acenaphthylene	208-96-8	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Acenaphthene	83-32-9	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Fluorene	86-73-7	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Phenanthrene	85-01-8	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Anthracene	120-12-7	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Fluoranthene	206-44-0	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Pyrene	129-00-0	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Benz(a)anthracene	56-55-3	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Chrysene	218-01-9	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Benzo(k)fluoranthene	207-08-9	0.02	µg/L	<0.02	<0.02	<0.02		<0.02
Benzo(a)pyrene	50-32-8	0.005	µg/L	<0.005	<0.005	<0.005		<0.005
Indeno(1.2.3.cd)pyrene	193-39-5	0.02	μg/L	<0.02	<0.02	<0.02		<0.02
Dibenz(a.h)anthracene	53-70-3	0.02	μg/L	<0.02	<0.02	<0.02		<0.02
Benzo(g.h.i)perylene	191-24-2	0.02	μg/L	<0.02	<0.02	<0.02		<0.02
^ Total PAH		0.005	μg/L	<0.005	<0.005	<0.005		<0.005
^ Benzo(a)pyrene TEQ (zero)		0.005	μg/L	<0.005	<0.005	<0.005		<0.005
EP080S: TPH(V)/BTEX Surrogate	es							
1.2-Dichloroethane-D4	17060-07-0	2	%	101	99.4	101		100
Toluene-D8	2037-26-5	2	%	92.8	94.3	94.8		96.0
4-Bromofluorobenzene	460-00-4	2	%	100	102	103		101
EP132T: Base/Neutral Extractabl	le Surrogates (Low-Leve	I)						
2-Fluorobiphenyl	321-60-8	0.02	%	119	109	110		105
Anthracene-d10	1719-06-8	0.02	%	114	114	108		116

Page : 14 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	nt sample ID	CV-T1-S1-0319	CV-SW-C-0319	CV-BO-0319	CV-BI-0319	CV-EB-0319
	Clie	ent samplin	g date / time	05-Mar-2019 12:05	05-Mar-2019 08:45	06-Mar-2019 16:00	06-Mar-2019 10:00	06-Mar-2019 15:45
Compound	CAS Number	LOR	Unit	EB1905872-006	EB1905872-007	EB1905872-008	EB1905872-009	EB1905872-010
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	Surrogates (Low-Level)) - Continu	ed					
4-Terphenyl-d14	1718-51-0	0.02	%	116	119	115		112

Page : 15 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-BB-0319	 	
	C	lient sampli	ng date / time	06-Mar-2019 16:00	 	
Compound	CAS Number	LOR	Unit	EB1905872-011	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	8.12	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	<1	 	
EA016: Calculated TDS (from Electrical	Conductivity)					
Total Dissolved Solids (Calc.)		1	mg/L	<1	 	
EA025: Total Suspended Solids dried a	t 104 ± 2°C	1				
Suspended Solids (SS)		5	mg/L	<5	 	
EA065: Total Hardness as CaCO3						
Total Hardness as CaCO3		1	mg/L	<1	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	 	
Total Alkalinity as CaCO3		1	mg/L	4	 	
ED041G: Sulfate (Turbidimetric) as SO4	4 2- by DA					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	 	
ED045G: Chloride by Discrete Analyser	r					
Chloride	16887-00-6	1	mg/L	<1	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	<1	 	
Magnesium	7439-95-4	1	mg/L	<1	 	
Sodium	7440-23-5	1	mg/L	<1	 	
Potassium	7440-09-7	1	mg/L	<1	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG035T: Total Recoverable Mercury by	FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG094F: Dissolved Metals in Fresh Wat						
Antimony	7440-36-0		µg/L	<0.2	 	
Selenium	7782-49-2	0.2	µg/L	<0.2	 	
Arsenic	7440-38-2	0.2	µg/L	<0.2	 	
Beryllium	7440-41-7	0.1	µg/L	<0.1	 	
Boron	7440-42-8	5	µg/L	<5	 	

Page : 16 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-BB-0319	 	
	Cli	ient samplii	ng date / time	06-Mar-2019 16:00	 	
Compound	CAS Number	LOR	Unit	EB1905872-011	 	
				Result	 	
EG094F: Dissolved Metals in Fresh V	Vater by ORC-ICPMS	- Continu	ed			
Cadmium	7440-43-9	0.05	µg/L	<0.05	 	
Chromium	7440-47-3	0.2	µg/L	<0.2	 	
Cobalt	7440-48-4	0.1	µg/L	<0.1	 	
Copper	7440-50-8	0.5	µg/L	<0.5	 	
Lead	7439-92-1	0.1	µg/L	<0.1	 	
Manganese	7439-96-5	0.5	µg/L	<0.5	 	
Molybdenum	7439-98-7	0.1	µg/L	<0.1	 	
Nickel	7440-02-0	0.5	µg/L	<0.5	 	
Silver	7440-22-4	0.1	µg/L	<0.1	 	
Tin	7440-31-5	0.2	µg/L	<0.2	 	
Zinc	7440-66-6	1	µg/L	<1	 	
EG094T: Total metals in Fresh water	by ORC-ICPMS					
Antimony	7440-36-0	0.2	µg/L	<0.2	 	
Selenium	7782-49-2	0.2	µg/L	<0.2	 	
Arsenic	7440-38-2	0.2	µg/L	<0.2	 	
Beryllium	7440-41-7	0.1	µg/L	<0.1	 	
Boron	7440-42-8	5	µg/L	<5	 	
Cadmium	7440-43-9	0.05	µg/L	<0.05	 	
Chromium	7440-47-3	0.2	µg/L	<0.2	 	
Cobalt	7440-48-4	0.1	µg/L	<0.1	 	
Copper	7440-50-8	0.5	µg/L	<0.5	 	
Lead	7439-92-1	0.1	µg/L	<0.1	 	
Manganese	7439-96-5	0.5	µg/L	<0.5	 	
Molybdenum	7439-98-7	0.1	µg/L	<0.1	 	
Nickel	7440-02-0	0.5	µg/L	<0.5	 	
Silver	7440-22-4	0.1	µg/L	<0.1	 	
Tin	7440-31-5	0.2	µg/L	<0.2	 	
Zinc	7440-66-6	1	µg/L	<1	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	<0.1	 	
EN055: Ionic Balance						
Total Anions		0.01	meq/L	0.08	 	
Total Cations		0.01	meq/L	<0.01	 	
EP080: BTEXN						

Page : 17 of 19 Work Order : EB1905872 Client : QLD DEPT OF ENVIRONMENT & SCIENCE Project : ---

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-BB-0319	 	
	Cl	lient sampli	ng date / time	06-Mar-2019 16:00	 	
Compound	CAS Number	LOR	Unit	EB1905872-011	 	
				Result	 	
EP080: BTEXN - Continued						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP132B: Polynuclear Aromatic Hy	drocarbons					
Naphthalene	91-20-3	0.02	µg/L	<0.02	 	
Acenaphthylene	208-96-8	0.02	µg/L	<0.02	 	
Acenaphthene	83-32-9	0.02	µg/L	<0.02	 	
Fluorene	86-73-7	0.02	µg/L	<0.02	 	
Phenanthrene	85-01-8	0.02	μg/L	<0.02	 	
Anthracene	120-12-7	0.02	µg/L	<0.02	 	
Fluoranthene	206-44-0	0.02	µg/L	<0.02	 	
Pyrene	129-00-0	0.02	µg/L	<0.02	 	
Benz(a)anthracene	56-55-3	0.02	µg/L	<0.02	 	
Chrysene	218-01-9	0.02	µg/L	<0.02	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.02	µg/L	<0.02	 	
Benzo(k)fluoranthene	207-08-9	0.02	μg/L	<0.02	 	
Benzo(a)pyrene	50-32-8	0.005	μg/L	<0.005	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.02	µg/L	<0.02	 	
Dibenz(a.h)anthracene	53-70-3	0.02	µg/L	<0.02	 	
Benzo(g.h.i)perylene	191-24-2	0.02	µg/L	<0.02	 	
^ Total PAH		0.005	µg/L	<0.005	 	
^ Benzo(a)pyrene TEQ (zero)		0.005	μg/L	<0.005	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	105	 	
Toluene-D8	2037-26-5	2	%	97.4	 	
4-Bromofluorobenzene	460-00-4	2	%	103	 	
EP132T: Base/Neutral Extractable	Surrogates (Low-Leve	I)				
2-Fluorobiphenyl	321-60-8	0.02	%	107	 	
Anthracene-d10	1719-06-8	0.02	%	113	 	

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	CV-BB-0319	 	
	Cli	ent samplir	ng date / time	06-Mar-2019 16:00	 	
Compound	CAS Number	LOR	Unit	EB1905872-011	 	
				Result	 	
EP132T: Base/Neutral Extractabl	e Surrogates (Low-Level) - Continu	ed			
4-Terphenyl-d14	1718-51-0	0.02	%	119	 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	53	134
Toluene-D8	2037-26-5	60	131
4-Bromofluorobenzene	460-00-4	59	127
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	53	134
Toluene-D8	2037-26-5	60	131
4-Bromofluorobenzene	460-00-4	59	127
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
Compound EP080S: TPH(V)/BTEX Surrogates	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates	CAS Number 17060-07-0	66	High 138
EP080S: TPH(V)/BTEX Surrogates 1.2-Dichloroethane-D4	17060-07-0	66	138
EP080S: TPH(V)/BTEX Surrogates 1.2-Dichloroethane-D4 Toluene-D8	17060-07-0 2037-26-5 460-00-4	66 79	138 120
EP080S: TPH(V)/BTEX Surrogates 1.2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	17060-07-0 2037-26-5 460-00-4	66 79	138 120
EP080S: TPH(V)/BTEX Surrogates 1.2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene EP132T: Base/Neutral Extractable S	17060-07-0 2037-26-5 460-00-4 urrogates (Low-Level)	66 79 74	138 120 118

Appendix C: Coal Fine Analysis

Microscopic Analysis

GREGORY SHAND/DES SEDIMENT SAMPLES

December 21, 2018

Right Solutions • Right Partner www.alsglobal.com

 Australian Laboratory Services Pty Ltd

 478 Freeman Road

 RICHLANDS QLD 4077

 ▼ +61 7 3713 8400 F + 61 7 3217 0774

Contents

1.	Introduction	. 1
2.	Procedure	. 1
3.	Results	.2
4.	Appendix A	. 3
	4.1 Float Sink Results (AS4156.1)	. 3
5.	Appendix B	.6

1. Introduction

ALS Energy – Coal Technology were contacted to conduct an analysis of some sediment samples to determine the amount of coal contained in each sample. Fourteen samples were received. The samples were prepared by float/sink at a density of S1.0/F2.0 (as per AS4156.1) to concentrate the coal portion of the sample. Maceral analysis (AS2856.2) was conducted on the eight samples at the ALS Coal Petrography and Imaging Centre at Richlands.

The eight samples were:

CV-T1-S1-1218
 CV-T1-S2-1218
 CV-T1-S3-1218
 CV-T1-S4-1218
 CV-T2-S2-1218
 CV-T2-S3-1218
 CV-CT1-S1-1218
 CV-CT1-S1-1218
 CV-CT1-S2-1218
 CV-CT1-S3-1218
 CV-CT1-S4-1218
 CV-CT2-S2-1218
 CV-CT2-S2-1218
 CV-CT2-S2-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218
 CV-CT2-S3-1218

2. Procedure

After receipt of sample from the Department of Environment and Science, the samples were prepped by removing excess water by filtration (where required), then air drying the samples. Float/sink testing was conducted, with the masses for three density fractions (Float 1.0, Sink 1.0 – Float 2.0 and Sink 2.0) being recorded (see Appendix A) and a petrography sample being prepared from the S1.0 - F2.0 fraction.

Samples were then prepared as per normal petrographic samples by mounting the crushed samples in an acrylic resin, which is polished via a multistage polishing procedure on a Struers Tegra polishing system to produce a suitable surface for reflected light microscopy.

A maceral count of each sample was conducted with the material under the crosshairs of the microscope being classified as per AS2856.2 (see Appendix B for Maceral Reports. 500 points were counted on each sample at 500x magnification.

3. Results

The results of the point count are outlined in the following table:

Sample	S1.0-F2.0 Mass (g)	Coal (% vol) in \$1.0-F2.0	Coal (g)	Coal (% mass)
CV-T1-S1-1218	23.3	5.4	0.8	0.3
CV-T1-S2-1218	22.3	6.1	0.9	0.6
CV-T1-S3-1218	3.7	3.8	0.1	0.0
CV-T1-S4-1218	2	3	0.0	0.0
CV-T2-S2-1218	1.3	2	0.0	0.0
CV-T2-S3-1218	10.1	0.8	0.1	0.0
CV-T2-S4-1218	67.4	6.1	2.4	0.4
CV-CT1-S1-1218	1.1	6.7	0.1	0.0
CV-CT1-S2-1218	17.9	2.6	0.3	0.2
CV-CT1-S3-1218	0.1	1.8	0.0	0.0
CV-CT1-S4-1218	0	0	0.0	0.0
CV-CT2-S2-1218	0	0	0.0	0.0
CV-CT2-S3-1218	0	0	0.0	0.0
CV-CT2-S4-1218	5.9	1.4	0.0	0.0

The samples were predominantly made up of a mixture of mineral matter and non-coal organic material. To calculate the mass of coal in each fraction, the coal is assumed to have a relative density of 1.4 whilst the mineral matter is assume to have a relative density of 2.6.

4. Appendix A

4.1 Float Sink Results (AS4156.1)

Sample	Fraction	Mass (g)
CV-T1-S1	F1	4.3
	S1 F2	23.3
	S2	232.8
CV-T1-S2	F1	12.8
	S1 F2	22.3
	S2	121.2
CV-T1-S3	F1	14.5
	S1 F2	3.7
	S2	524.8
CV-T1-S4	F1	2.9
	S1 F2	2
	S2	360.2
CV-T2-S2	F1	12.5
	S1 F2	1.3
	S2	90.1
CV-T2-S3	F1	3
	S1 F2	10.1
	S2	314.9

		1
CV-T2-S4	F1	9.6
	S1 F2	67.4
	S2	513.5
CV-CT1-S1	F1	0.1
	S1 F2	1.1
	S2	382.7
CV-CT1-S2	F1	7.3
	S1 F2	17.9
	S2	136.4
CV-CT1-S3	F1	0
	S1 F2	0.1
	S2	396.2
CV-CT1-S4	F1	0
	S1 F2	0
	S2	373.5
CV-CT2-S2	F1	0
	S1 F2	0
	S2	662.2
CV-CT2-S3	F1	0
	S1 F2	0
	S2	736.7

CV-CT2-S4	F1	0
	S1 F2	5.9
	S2	623.2

5. Appendix B

Report Number: 45012946 Petrography Number: 3013N Client: ACIRL CASH SALE

MACERAL ANALYSIS

CROUP	VOLUME	VOLUME	SUBGROUP	MACERAL	VOLUME	VOLUME
	69	(% mineral free)			66)	66 mineral fre
VITRINITE	1.4	7.0	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	1.2	6.0
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.2	1.0
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.6	3.0		Sporinite	0.4	2.0
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.2	1.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	0.6	3.0	Telo-inertinite	Fusinite	0.0	0.0
				Semifusinite	0.6	3.0
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.0	0.0
			Gelo-inertinite	Micrinite Macrinite	0.0	0.0
ORGANIC						
MATTER	17.3	87.0				
MINERAL	80.1					
		vith Australian Standa	rds A8 2836.1; A8 2836.2.			
	19/12/2018					Observations: 503
	I on As Received sam		presentation of results.			
This data has not b	een arundally round	ed to avoid misleadin	g presentation of results.			
~	1000			le filferson y .		
NATA	Reporting Signate	arv.	-	Erin Cafferky, Petrog	rapher	
Anne 21410- 81 578+ San 8 857	Gregory Shand, P	etrographer				1 of
See & 457 DONFIDENTIAL						
his document is confid	iential and proprietary to ALS and AOIRL OASH SA	o ALS and ADIRL DASH SA ALE.	LE. No part of this document :	may be reproduced or disclo	ced in any form to r	any person without th
			LS and ADIRL DASH SALE. All	rights reserved in respect of	oopyright materials	of ALS and ADIRL DA
	PETROCRA	PHY AND IMACINC C	ENTRE EMAIL Petrogra	phylmagingCentre@alsg	lobal.com	

Report Number: 45012946 Petrography Number: 3012N Client: ACIRL CASH SALE

MACERAL ANALYSIS

GROUP	VOLUME	VOLUME	SUBGROUP	MACERAL	VOLUME	VOLUME
	09	(% mineral free)			69	(% mineral free
VITRINITE	5.5	11.7	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	5.1	10.9
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.4	0.8
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.4	0.8		Sporinite	0.2	0.4
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.2	0.4
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	0.8	1.7	Telo-inertinite	Fusinite	0.0	0.0
				Semifusinite	0.6	1.3
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.2	0.4
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC						
MATTER	40.5	85.8				

MINERAL 52.8 Prepared and measured in accordance with Australian Standards AS 2836.1; AS 2836.2. 20/12/2018 Date: Observations: 506 Analysis performed on As Received sample This data has not been artificially rounded to avoid misleading presentation of results. 1000 180.5%----NATA Reporting Signatory Lauren Stanton, Petrographer \sim 1 of 1 Gregory Shand, Petrographer Sae & 857 OMINICENTEL This document is confidential and proprietary to ALS and ADIEL DASH SALE. No part of this document may be reproduced or displosed in any form to any person without the prior written concent of ALS and ADIEL CASH SALE. This document includes: meterials that are sopyright and proprietary to ALS and ADIEL CASH SALE. All rights reserved in respect of copyright materials of ALS and ADIEL CASH SALE. PETROCRAPHY AND IMACINC CENTRE | EMAIL PetrographyImagingCentre@alsglobal.com ADDRESS 478 Freeman Road Richlands QLD 4077 Australia | PHONE +61 7 3713 8400 | FAX +61 7 3217 0774 Copyright @ ACIRL Pty Ltd, 2018 ABN 41 000 513 688 Part of ALS Limited Ceal 👷 www.alsglobal.com BLUTIONS

Report Number: 45012946 Petrography Number: 3014N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Detai	ils:	4501294	45012946 CV-CT1-S3 S1 F2 DES Nov Enviro TQ18011488V043				
GROUP		VOLUME (% mineral free)	SUBGROUP	MACERAL	VOLUME (%)	VOLUME (% mineral fre	
VITRINITE	1.0	7.9	Telovitrinite	Textinite	0.0	0.0	
				Texto-ulminite	0.0	0.0	
				Eu-ulminite	0.0	0.0	
				Telocollinite	0.8	6.3	
			Detrovitrinite	Attrinite	0.0	0.0	
				Densinite	0.0	0.0	
				Desmocollinite	0.2	1.6	
			Gelovitrinite	Corpogellinite	0.0	0.0	
				Porigelinite	0.0	0.0	
				Eugelinite	0.0	0.0	
LIPTINITE	0.0	0.0		Sporinite	0.0	0.0	
				Cutinite	0.0	0.0	
				Resinite	0.0	0.0	
				Liptodetrinite	0.0	0.0	
				Alginite	0.0	0.0	
				Suberinite	0.0	0.0	
				Fluorinite	0.0	0.0	
				Exsudatinite	0.0	0.0	
				Bituminite	0.0	0.0	
NERTINITE	0.8	6.3	Telo-inertinite	Fusinite	0.0	0.0	
				Semifusinite	0.8	6.3	
				Funginite	0.0	0.0	
			Detro-inertinite	Inertodetrinite	0.0	0.0	
				Micrinite	0.0	0.0	
			Gelo-inertinite	Macrinite	0.0	0.0	
ORGANIC							

MINERAL	87.5			
Prepared and mea	asured in accordance with Aust	ralian Standards AS 2856.1; AS	2836.2.	
Date:	20/12/2018			Observations: 502
Analysis performe	ed on As Received sample			
This data has not	been artificially rounded to av	oid misleading presentation of r	esults.	
\land	1000		Peterson -	
NATA	Reporting Signatory		Lauren Stanton, Petrographer	r
Asset Classics Bat 5784	Gregory Shand, Petrogra	pher		1 of 1
	fidential and proprietary to ALS and of ALS and AOIRL DASH SALE.	ADIRL DASH SALE. No part of this do	comment may be reproduced or dissisted in any	form to any person without the
This document include SALE	es meterials that are copyright and	proprietary to ALS and AOIRL OASH S	ALE. All rights reserved in respect of copyright	materials of ALS and ADIRL DASH
	PETROCRAPHY AND	IMACINC CENTRE EMAIL P	etrographyImagingCentre@alsglobal.com	1
	ADDRESS 478 Freeman Road	Richlands QLD 4077 Australia	PHONE +61 7 3713 8400 FAX +61 7 3	217 0774
	Copyrigh	t @ ACIRL Pty Ltd, 2018 ABN 41 0	00 513 888 Part of ALS Limited	
Ceat	2	www.alsglob	al.com	9
		DIDNT SOLUTIONS OR	AT PAD TRUE	

Report Number: 45012946 Petrography Number: 3015N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		4501294	45012946 CV-CT2-S4 S1 F2 DES Nov Enviro TQ18011488V055				
GROUP	VOLUME (%)	VOLUME (% mineral free)	SUBGROUP	MACERAL	VOLUME (%)	VOLUME (% mineral free	
VITRINITE	1.2	8.4	Telovitrinite	Textinite	0.0	0.0	
				Texto-ulminite	0.0	0.0	
				Eu-ulminite	0.0	0.0	
				Telocollinite	0.8	5.6	
			Detrovitrinite	Attrinite	0.0	0.0	
				Densinite	0.0	0.0	
				Desmocollinite	0.4	2.8	
			Gelovitrinite	Corpogellinite	0.0	0.0	
				Porigelinite	0.0	0.0	
				Eugelinite	0.0	0.0	
LIPTINITE	0.0	0.0		Sporinite	0.0	0.0	
				Cutinite	0.0	0.0	
				Resinite	0.0	0.0	
				Liptodetrinite	0.0	0.0	
				Alginite	0.0	0.0	
				Suberinite	0.0	0.0	
				Fluorinite	0.0	0.0	
				Exsudatinite	0.0	0.0	
				Bituminite	0.0	0.0	
INERTINITE	0.2	1.4	Telo-inertinite	Fusinite	0.0	0.0	
				Semifusinite	0.2	1.4	
				Funginite	0.0	0.0	
			Detro-inertinite	Inertodetrinite	0.0	0.0	
				Micrinite	0.0	0.0	
			Gelo-inertinite	Macrinite	0.0	0.0	
NATURAL							
COKE	12.6	90.3					

MINERAL	86.0		
Prepared and me	asured in accordance with Australian Standards AS 28	856.1; A8 2856.2.	
Date:	19/12/2018	0	Observations: 515
Analysis perform	ed on As Received sample		
This data has not	t been artificially rounded to avoid misleading presen	tation of results.	
\wedge	10	Claudia P. Lunnon	
	Reporting Signatory Gregory Shand, Petrographer	Claudia Lunnon, Petrographer	1 of 1
	fidential and proprietary to ALS and ADIRL DASH SALE. No pa of ALS and ADIRL DASH SALE.	ut of this document may be reproduced or discissed in any form to a	ny person without the
This document includ SALE.	ies materials that are copyright and proprietary to ALS and AC	ORL DASH SALE. All rights reserved in respect of copyright meterials	of ALS and ADIRL DASH
	PETROCRAPHY AND IMACINC CENTRE	EMAIL PetrographylmagingCentre@alsglobal.com	
	ADDRESS 478 Freeman Road Richlands QLD 4077 A	ustralia PHONE +61 7 3713 8400 FAX +61 7 3217 077	4
	Copyright @ ACIRL Pty Ltd, 2018	ABN 41 000 513 688 Part of ALS Limited	
Cea	www.a	isglobal.com	

Report Number: 45012946 Petrography Number: 3005N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		45012946 CV-T1-S1 S1 F2 DES Nov Enviro TQ18011488V016			8V016	
GROUP	VOLUME (%)	VOLUME (% mineral free)	SUBGROUP	MACERAL		VOLUME (% mineral free)
VITRINITE	3.8	11.8	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	3.0	9.3
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.8	2.5
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.2	0.6		Sporinite	0.2	0.6
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	1.4	4.4	Telo-inertinite	Fusinite	0.0	0.0
				Semifusinite	0.8	2.5
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.6	1.9
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC MATTER	26.9	83.3				

MINERAL 67.7 Prepared and measured in accordance with Australian Standards AS 2836.1; AS 2836.2. 18/12/2018 Observations: 502 Date: Analysis performed on As Received sample This data has not been artificially rounded to avoid misleading presentation of results. 1000 Claudia P. Lunnon NATA Reporting Signatory Claudia Lunnon, Petrographer \sim 1 of 1 Gregory Shand, Petrographer Sae & 857 CONFIDENTIAL CONTROLATION. This document is confidential and proprietary to ALS and ADIEL OACH SALE. No part of this document may be reproduced or disclosed in any form to any person without the prior written concent of ALS and ADIEL CACH SALE. This document includes materials that are copyright and proprietary to ALS and ADIEL CACH SALE. All rights reserved in respect of copyright materials of ALS and ADIEL CACH SALE. cument includes materials that are copyright and proprietary to ALS and ADIRL DASH SALE. All rights reserved in respect of copyright materials of ALS and ADIRL DASH PETROCRAPHY AND IMACINC CENTRE | EMAIL PetrographyImagingCentre@alsglobal.com ADDRESS 478 Freeman Road Richlands QLD 4077 Australia | PHONE +61 7 3713 8400 | FAX +61 7 3217 0774 Copyright @ ACIRL Pty Ltd, 2018 ABN 41 000 513 888 Part of ALS Limited Ceal 👷 www.alsglobal.com BLUTIONS

Report Number: 45012946 Petrography Number: 3006N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		450129	46 CV-T1-S2 S1 F2	DES Nov Enviro	TQ1801148	8V019
GROUP	VOLUME (%)	VOLUME (% mineral free)	SUBGROUP	MACERAL		VOLUME (% mineral free)
VITRINITE	4.5	16.7	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	3.9	14.5
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.6	2.2
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.2	0.7		Sporinite	0.2	0.7
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	1.4	5.0	Telo-inertinite	Fusinite	0.2	0.7
				Semifusinite	1.0	3.6
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.2	0.7
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC MATTER	21.0	77.5				

MINERAL 72.9 Prepared and measured in accordance with Australian Standards AS 2836.1; AS 2836.2. Observations: 510 Date: 18/12/2018 Analysis performed on As Received sample This data has not been artificially rounded to avoid misleading presentation of results. 1000 Claudia P. Lunnon NATA Reporting Signatory Claudia Lunnon, Petrographer \sim 1 of 1 Gregory Shand, Petrographer San D. 857 CONFIDENTIAL CONTROLATION. This document is confidential and proprietary to ALS and ADIEL OACH SALE. No part of this document may be reproduced or disclosed in any form to any person without the prior written concent of ALS and ADIEL CACH SALE. This document includes materials that are copyright and proprietary to ALS and ADIEL CACH SALE. All rights reserved in respect of copyright materials of ALS and ADIEL CACH SALE. cument includes materials that are copyright and proprietary to ALS and ADIRL DASH SALE. All rights reserved in respect of copyright materials of ALS and ADIRL DASH PETROCRAPHY AND IMACINC CENTRE | EMAIL PetrographyImagingCentre@alsglobal.com ADDRESS 478 Freeman Road Richlands QLD 4077 Australia | PHONE +61 7 3713 8400 | FAX +61 7 3217 0774 Copyright @ ACIRL Pty Ltd, 2018 ABN 41 000 513 888 Part of ALS Limited Ceal 👷 www.alsglobal.com BLUTIONS

Report Number: 45012946 Petrography Number: 3007N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		450129	46 CV-T1-S3 S1 F2	DES Nov Enviro	TQ1801148	8V022
GROUP	VOLUME (%)	VOLUME (% mineral free)	SUBGROUP	MACERAL		VOLUME (% mineral free)
VITRINITE	1.8	11.8	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	1.6	10.5
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.2	1.3
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.2	1.3		Sporinite	0.2	1.3
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	1.8	11.8	Telo-inertinite	Fusinite	0.6	3.9
				Semifusinite	1.0	6.6
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.2	1.3
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC MATTER	11.3	75.0				

MINERAL 85.0 Prepared and measured in accordance with Australian Standards AS 2856.1; AS 2856.2. Observations: 505 Date: 19/12/2018 Analysis performed on As Received sample This data has not been artificially rounded to avoid misleading presentation of results. 1000 Claudia P. Lunnon NATA Reporting Signatory Claudia Lunnon, Petrographer \sim 1 of 1 Gregory Shand, Petrographer Sae & 857 CONFIDENTIAL CONTROLATION. This document is confidential and proprietary to ALS and ADIEL OACH SALE. No part of this document may be reproduced or disclosed in any form to any person without the prior written concent of ALS and ADIEL CACH SALE. This document includes materials that are copyright and proprietary to ALS and ADIEL CACH SALE. All rights reserved in respect of copyright materials of ALS and ADIEL CACH SALE. cument includes materials that are copyright and proprietary to ALS and ADIRL DASH SALE. All rights reserved in respect of copyright materials of ALS and ADIRL DASH PETROCRAPHY AND IMACINC CENTRE | EMAIL PetrographyImagingCentre@alsglobal.com ADDRESS 478 Freeman Road Richlands QLD 4077 Australia | PHONE +61 7 3713 8400 | FAX +61 7 3217 0774 Copyright @ ACIRL Pty Ltd, 2018 ABN 41 000 513 888 Part of ALS Limited Ceal 👷 www.alsglobal.com BLUTIONS

Report Number: 45012946 Petrography Number: 3008N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		45012946 CV-T1-S4 S1 F2 DES Nov Enviro TQ18011488V			38V025	
GROUP	VOLUME (%)	VOLUME (% mineral free)	SUBGROUP	MACERAL	VOLUME (%)	VOLUME (% mineral free)
VITRINITE	2.8	24.6	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	2.8	24.6
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.0	0.0
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.0	0.0		Sporinite	0.0	0.0
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	0.2	1.8	Telo-inertinite	Fusinite	0.2	1.8
				Semifusinite	0.0	0.0
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.0	0.0
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC MATTER	8.3	73.7				

MINERAL 88.8 Prepared and measured in accordance with Australian Standards AS 2856.1; AS 2856.2. Observations: 508 Date: 19/12/2018 Analysis performed on As Received sample This data has not been artificially rounded to avoid misleading presentation of results. Claudia P. Lunnon NATA Reporting Signatory Claudia Lunnon, Petrographer \sim 1 of 1 Gregory Shand, Petrographer Sae & 857 OMPROFINEL This document is confidential and proprietary to ALS and ADIEL DASH SALE. No part of this document may be reproduced or displosed in any form to any person without the prior written concent of ALS and ADIEL CASH SALE. This document includes materials that are sopyright and proprietary to ALS and ADIEL CASH SALE. All rights reserved in respect of copyright materials of ALS and ADIEL DASH SALE. PETROCRAPHY AND IMACINC CENTRE | EMAIL PetrographyImagingCentre@alsglobal.com ADDRESS 478 Freeman Road Richlands QLD 4077 Australia | PHONE +61 7 3713 8400 | FAX +61 7 3217 0774 Copyright @ ACIRL Pty Ltd, 2018 ABN 41 000 513 888 Part of ALS Limited Ceal 👷 www.alsglobal.com BLUTIONS

Report Number: 45012946 Petrography Number: 3009N Client: ACIRL CASH SALE

MACERAL ANALYSIS

GROUP	VOLUME	VOLUME	SUBGROUP	MACERAL	VOLUME	VOLUME
	09	(% mineral free)			66)	66 mineral fre
VITRINITE	1.2	6.0	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	1.0	5.0
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.2	1.0
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.0	0.0		Sporinite	0.0	0.0
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	0.8	4.0	Telo-inertinite	Fusinite	0.0	0.0
				Semifusinite	0.4	2.0
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.4	2.0
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0

MATTER 17.8

MINERAL	80.2		
Prepared and me	asured in accordance with Australian Standar	ds A8 2836.1; A8 2836.2.	
Date:	20/12/2018		Observations: 506
Analysis perform	ed on As Received sample		
This data has not	t been artificially rounded to avoid misleading	presentation of results.	
	100	ater to a second	
NATA	Reporting Signatory	Lauren Stanton, Petrographer	-
\sim	Gregory Shand, Petrographer		1 of 1
Saudi Station Bit 5784			
CONFIDENTIAL			
	fidential and proprietary to ALS and ADIRL DASH SAL of ALS and ADIRL DASH SALE.	No part of this document may be reproduced or dissisted in any form to	any person without the
		S and ADIRL DASH SALE. All rights reserved in respect of copyright material	is of ALS and ADIRL DASH
	PETROCRAPHY AND IMACINC CE	NTRE EMAIL PetrographylmagingCentre@alsglobal.com	
	ADDRESS 478 Freeman Road Richlands QLD	4077 Australia PHONE +61 7 3713 8400 FAX +61 7 3217 07	74
	Copyright @ ACIRL Pty Lt	td, 2018 ABN 41 000 513 688 Part of ALS Limited	
Coat	with white	ww.alsglobal.com	
	DIDHT :	INATIONS ORIGINATION OF THE OWNER	

Report Number: 45012946 Petrography Number: 3010N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		45012946 CV-T2-S3 S1 F2 DES Nov Enviro TQ18011488V0			8V031	
GROUP	VOLUME (%)	VOLUME (% mineral free)	SUBGROUP	MACERAL		VOLUME (% mineral free)
VITRINITE	0.4	1.8	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	0.4	1.8
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.0	0.0
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.4	1.8		Sporinite	0.4	1.8
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	0.0	0.0	Telo-inertinite	Fusinite	0.0	0.0
				Semifusinite	0.0	0.0
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	0.0	0.0
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC MATTER	20.7	96.4				

MINERAL 78.6 Prepared and measured in accordance with Australian Standards AS 2856.1; AS 2856.2. Observations: 513 Date: 19/12/2018 Analysis performed on As Received sample This data has not been artificially rounded to avoid misleading presentation of results. 1000 Claudia P. Lunnon NATA Reporting Signatory Claudia Lunnon, Petrographer \sim 1 of 1 Gregory Shand, Petrographer Sae & 857 CONFIDENTIAL CONTROLATION. This document is confidential and proprietary to ALS and ADIEL DADY SALL. No part of this document may be reproduced or disclosed in any form to any person without the prior written concent of ALS and ADIEL DADY SALE. This document includes materials that are copyright and proprietary to ALS and ADIEL DADY SALE. All rights reserved in respect of copyright materials of ALS and ADIEL DADY SALE. PETROCRAPHY AND IMACINC CENTRE | EMAIL PetrographyImagingCentre@alsglobal.com ADDRESS 478 Freeman Road Richlands QLD 4077 Australia | PHONE +61 7 3713 8400 | FAX +61 7 3217 0774 Copyright @ ACIRL Pty Ltd, 2018 ABN 41 000 513 888 Part of ALS Limited Ceal 👷 www.alsglobal.com BLUTIONS

Report Number: 45012946 Petrography Number: 3011N Client: ACIRL CASH SALE

MACERAL ANALYSIS

Sample Details:		45012946 CV-T2-S4 S1 F2 DES Nov Enviro TQ18011488V034				
GROUP		VOLUME (% mineral free)	SUBGROUP	MACERAL	VOLUME (%)	VOLUME (% mineral free
VITRINITE	3.1	21.0	Telovitrinite	Textinite	0.0	0.0
				Texto-ulminite	0.0	0.0
				Eu-ulminite	0.0	0.0
				Telocollinite	2.9	19.7
			Detrovitrinite	Attrinite	0.0	0.0
				Densinite	0.0	0.0
				Desmocollinite	0.2	1.3
			Gelovitrinite	Corpogellinite	0.0	0.0
				Porigelinite	0.0	0.0
				Eugelinite	0.0	0.0
LIPTINITE	0.4	2.6		Sporinite	0.4	2.6
				Cutinite	0.0	0.0
				Resinite	0.0	0.0
				Liptodetrinite	0.0	0.0
				Alginite	0.0	0.0
				Suberinite	0.0	0.0
				Fluorinite	0.0	0.0
				Exsudatinite	0.0	0.0
				Bituminite	0.0	0.0
INERTINITE	2.6	17.1	Telo-inertinite	Fusinite	0.0	0.0
				Semifusinite	1.2	7.9
				Funginite	0.0	0.0
			Detro-inertinite	Inertodetrinite	1.4	9.2
				Micrinite	0.0	0.0
			Gelo-inertinite	Macrinite	0.0	0.0
ORGANIC						

MINERAL	85.1		
Prepared and me	asured in accordance with Australian Sta	ndards A8 2836.1; A8 2836.2.	
Date:	19/12/2018		Observations: 511
Analysis perform	ed on As Received sample		
This data has not	t been artificially rounded to avoid misles	iding presentation of results.	
\wedge	10 ⁴⁰	bilferry.	
NATA	Reporting Signatory	Erin Cafferky, Petrographer	-
~	Gregory Shand, Petrographer		1 of 1
San D. 857			
CONFIDENTIAL			
	ifidential and proprietary to ALS and ADIRL DAS t of ALS and ADIRL DASH SALE.	H SALE. No part of this document may be reproduced or disclosed in any form to	any person without the
This document includ SALE.	fez materials that are copyright and proprietary	to ALS and AORL OASH SALE. All rights reserved in respect of copyright materia	is of ALS and ADIRL DASH
	PETROCRAPHY AND IMACIN	C CENTRE EMAIL PetrographylmagingCentre@alsglobal.com	
	ADDRESS 478 Freeman Road Richlands	QLD 4077 Australia PHONE +61 7 3713 8400 FAX +61 7 3217 0	774
	Copyright @ ACIRL	Pty Ltd, 2018 ABN 41 000 513 668 Part of ALS Limited	
Cea		www.alsglobal.com	9
	0.0	NT SOLUTIONS ORDER PAD TOWN	